
Real-Time Workshop®

For Use with Simulink®

Modeling

Simulation

Implementation

Reference
Version 6

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Real-Time Workshop Reference

© COPYRIGHT 2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2006 Online only New for Version 6.4
September 2006 Online only Updated for Version 6.5 (Release 2006b)

Contents

Configuration Parameter Reference

1

Functions — By Category

2
Build Information . 2-2

Project Documentation . 2-4

Rapid Simulation . 2-4

Target Language Compiler Library 2-4

Functions — Alphabetical List

3

Simulink Block Support

4

Blocks — By Category

5
Custom Code . 5-2

v

Interrupt Templates . 5-3

S-Function Target . 5-4

VxWorks . 5-5

Blocks — Alphabetical List

6

Index

vi Contents

1

Configuration Parameter
Reference

1 Configuration Parameter Reference

The following table lists Real-Time Workshop® and Real-Time Workshop
Embedded Coder parameters that you can use to tune model and target
configurations. The table provides brief descriptions, valid values (bold type
highlights defaults), and a mapping to Configuration Parameter dialog box
equivalents. For descriptions of the panes and options in that dialog box, see
“Adjusting Simulation Configuration Parameters for Code Generation” and
“Configuring Real-Time Workshop Code Generation Parameters”.

Use the get_param and set_param commands to retrieve and set the values of
the parameters on the MATLAB® command line or programatically in scripts.
The Configuration Wizard in the Real-Time Workshop Embedded Coder also
provides buttons and scripts for customizing code generation.

For information about Simulink® parameters, see “Model Configuration
Dialog Box” in the Simulink documentation. For information on using
get_param and set_param to tune the parameters for various model
configurations, see “Parameter Tuning by Using MATLAB Commands”. See
“Using Configuration Wizard Blocks” in the Real-Time Workshop Embedded
Coder documentation for information on using Configuration Wizard features.

Note Parameters that are specific to Real-Time Workshop Embedded Coder,
Stateflow®, or Fixed-Point Toolbox support are marked accordingly. For
example, Real-Time Workshop Embedded Coder parameters are marked with
an (EC). To set the values of these parameters, you must have appropriate
product licensing.

1-2

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

BufferReuse
off, on

Optimization > Reuse block
outputs

Reuse local (function)
variables for block outputs
wherever possible.
Selecting this option
trades code traceability
for code efficiency.

CodeGenDirectory Not available For MathWorks use only.

CombineOutputUpdateFcns
(EC)
off, on

Real-Time Workshop
> Interface > Single
output/update function

Generate a model’s output
and update routines into a
single-step function.

Comment Not available For MathWorks use only.

ConfigAtBuild Not available For MathWorks use only.

ConfigurationMode Not available For MathWorks use only.

ConfigurationScript Not available For MathWorks use only.

CustomCommentsFcn (EC)
string

Real-Time Workshop >
Comments > Custom
comments function

Specify the filename of
the M-function or TLC
function that adds the
custom comment.

CustomHeaderCode
string

Real-Time
Workshop > Custom
Code > Header file

Specify the code to appear
at the top of the generated
model.h header file.

CustomInclude
string

Real-Time
Workshop > Custom
Code > Include directories

Specify a space-separated
list of include directories
to be added to the include
path when compiling the
generated code.

CustomInitializer
string

Real-Time
Workshop > Custom Code

Specify the code to appear
in the generated model
initialize function.

1-3

1 Configuration Parameter Reference

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

CustomLibrary
string

Real-Time
Workshop > Custom
Code > Initialize function
Libraries

Specify a space-separated
list of static library files
to be linked with the
generated code.

CustomSource
string

Real-Time
Workshop > Custom
Code > Source files

Specify a space-separated
list of source files to be
compiled and linked with
the generated code.

CustomSourceCode
string

Real-Time
Workshop > Custom
Code > Source file

Specify code to appear at
the top of the generated
model.c source file.

CustomSymbolStrBlkIO (EC)
string - rtb_NM

Real-Time Workshop >
Symbols > Local block output
variables

Specify a symbol format
rule for local block output
variables. The rule
can contain valid C
identifier characters and
the following macros:
$M - Mangle
$N - Name of object
$A - Data type acronym

CustomSymbolStrFcn (EC)
string - RNMF

Real-Time Workshop >
Symbols > Subsystem methods

Specify a symbol format
rule for subsystem
methods. The rule
can contain valid C
identifier characters and
the following macros:
$M - Mangle
$R - Root model name
$N - Name of object
$H - System
hierarchy number
$F - Subsystem method
name

1-4

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

CustomSymbolStrField (EC)
string - NM

Real-Time Workshop >
Symbols > Field name of
global types

Specify a symbol format
rule for field name of
global types. The rule
can contain valid C
identifier characters and
the following macros:
$M - Mangle
$N - Name of object
$H - System
hierarchy number
$A - Data type acronym

CustomSymbolStrGlobalVar
(EC)
string - RN$M

Real-Time Workshop >
Symbols > Global variables

Specify a symbol format
rule for global variables.
The rule can contain valid
C identifier characters
and the following macros:
$M - Mangle
$R - Root model name
$N - Name of object

CustomSymbolStrMacro (EC)
string - RN$M

Real-Time Workshop >
Symbols > Constant macros

Specify a symbol format
rule for constant macros.
The rule can contain valid
C identifier characters
and the following macros:
$M - Mangle
$R - Root model name
$N - Name of object

1-5

1 Configuration Parameter Reference

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

CustomSymbolStrTmpVar (EC)
string - NM

Real-Time Workshop >
Symbols > Local temporary
variables

Specify a symbol format
rule for local temporary
variables. The rule
can contain valid C
identifier characters and
the following macros:
$M - Mangle
$R - Root model name
$N - Name of object

CustomSymbolStrType (EC)
string - NR$M

Real-Time Workshop >
Symbols > Global types

Specify a symbol format
rule for global types. The
rule can contain valid C
identifier characters and
the following macros:
$M - Mangle
$R - Root model name
$N - Name of object

CustomTerminator
string

Real-Time
Workshop > Custom
Code > Terminate function

Specify code to appear
in the model’s generated
terminate function.

DataBitsets (Stateflow)
off, on

Optimization > Use bit sets
for storing boolean data

Use bit sets for storing
Boolean data.

DataDefinitionFile (EC)
string

Real-Time Workshop > Data
Placement > Data definition
filename

Specify the name of a
single separate .c or .cpp
file that contains global
data definitions.

DataReferenceFile (EC)
string

Real-Time Workshop > Data
Placement > Data declaration
filename

Specify the name of a
single separate .c or .cpp
file that contains global
data references.

1-6

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

DefineNamingFcn
string

Real-Time
Workshop > Symbols > #define
naming > Custom M-function

Specify a custom
M-function to control
the naming of symbols
with #define statements.
You can set this parameter
only if DefineNamingRule
is set to Custom.

DefineNamingRule (EC)
None, UpperCase, LowerCase,
Custom

Real-Time Workshop >
Symbols > #define naming

Specify the rule that
changes the spelling of all
#define names.

EfficientFloat2IntCast
off, on

Optimization > Remove
code from floating-point to
integer conversions that wrap
out-of-range values

Remove wrapping code
that handles out-of-range
floating-point to integer
conversion results.

ERTCustomFileBanners Not available For MathWorks use only.

ERTCustomFileTemplate (EC)
string -
example_file_process.tlc

Real-Time Workshop
> Templates > File
customization template

Specify a TLC callback
script for customizing the
generated code.

ERTDataHdrFileTemplate (EC)
string -
ert_code_template.cgt

Real-Time Workshop >
Templates > Header file (*.h)
template

Specify a template that
organizes the generated
data .h header files.

ERTDataSrcFileTemplate (EC)
string -
ert_code_template.cgt

Real-Time Workshop >
Templates > Source file (*.c or
*.cpp) template

Specify a template that
organizes the generated
data .c source files.

ERTHdrFileBannerTemplate
(EC)
string -
ert_code_template.cgt

Real-Time Workshop >
Templates > Header file (*.h)
template

Specify a template that
organizes the generated
code .h header files.

ERTSrcFileBannerTemplate
(EC)
string -
ert_code_template.cgt

Real-Time Workshop >
Templates > Source file (*.c or
*.cpp) template

Specify a template that
organizes the generated
code .c or .cpp source
files.

1-7

1 Configuration Parameter Reference

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

EnableCustomComments (EC)
off, on

Real-Time Workshop >
Comments > Custom
comments (MPT objects
only)

Add a comment above a
signal’s or parameter’s
identifier in the generated
file.

EnforceIntegerDowncast
off, on

Optimization > Ignore
integer downcasts in folded
expressions

Remove casts of
intermediate variables
to improve code efficiency.
When you select this
option, expressions
involving 8-bit and
16-bit arithmetic on
microprocessors of a
larger bit size are less
likely to overflow in code
than in simulation.

ERTFirstTimeCompliant (EC)
off, on

Not available Indicate whether a target
supports the ability to
control inclusion of the
firstTime argument in
the model_initialize
function generated for a
Simulink model. You set
this parameter in a call
to the SelectCallback
function. Default is off
for custom and non-ERT
targets and on for ERT
targets.

EvaledLifeSpan Not available For MathWorks use only.

ExpressionFolding
off, on

Optimization > Eliminate
superfluous temporary
variables (Expression
folding) > Interface

Collapse block
computations into single
expressions wherever
possible. This improves
code readability and
efficiency.

1-8

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

ExtMode
off, on

Real-Time
Workshop > Interface

Specify the data interface
to be generated with the
code.

ExtModeMexArgs
string - mex

Real-Time Workshop >
Interface > Interface
> External > MEX-file
arguments

Specify external mode mex
arguments.

ExtModeMexFile Not available For MathWorks use only.

ExtModeStaticAlloc
off, on

Real-Time Workshop
> Interface > Static
memory allocation

Use a static memory buffer
for external mode instead
of allocating dynamic
memory (calls to malloc).

ExtModeStaticAllocSize
off, on

Real-Time Workshop >
Interface > Static memory
buffer size

Specify the size in bytes of
the external mode static
memory buffer.

ExtModeTesting Not available For MathWorks use only.

ExtModeTransport
tcpip, serial-win32

Real-Time Workshop >
Interface > Interface >
External > Transport layer

Specify transport protocols
for external mode
communications.

FoldNonRolledExpr Not available For MathWorks use only.

ForceParamTrailComments
off, on

Real-Time Workshop >
Comments > Verbose
comments for SimulinkGlobal
storage class

Specify that comments be
included in the generated
file. To reduce file size,
the model parameters
data structure is not
commented when there
are more than 1000
parameters.

GenCodeOnly
off, on

Real-Time
Workshop > Generate
code only

Generate source code,
but do not execute the
makefile to build an
executable.

1-9

1 Configuration Parameter Reference

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

GenerateASAP2
off, on

Real-Time Workshop >
Interface > Interface

Specify the data interface
to be generated with the
code.

GenerateComments
off, on

Real-Time Workshop >
Comments > Include
comments

Include comments in
generated code.

GenerateErtSFunction (EC)
off, on

Real-Time Workshop >
Interface > Create Simulink
(S-Function) block

Wrap the generated code
inside an S-Function
block. This allows you
to validate the generated
code in Simulink.

GenerateFullHeader Not available For MathWorks use only.

GenerateMakefile
off, on

Real-Time Workshop >
General > Generate makefile

Specify whether
Real-Time Workshop
is to generate a makefile
during the build process
for a model.

GenerateReport
off, on

Real-Time Workshop >
General > Generate HTML
report

Document the generated
C or C++ code in an HTML
report.

GenerateSampleERTMain (EC)
off, on

Real-Time Workshop >
Templates > Generate an
example main program

Generate an example
main program that
demonstrates how to
deploy the generated code.
The program is written
to the file ert_main.c or
ert_main.cpp.

GenFloatMathFcnCalls
string

Real-Time Workshop
> Interface > Target
floating-point math
environment

Specify the math library
extension available to
your target.

1-10

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

GlobalDataDefinition(EC)
Auto, InSourceFile,
InSeparateSourceFile

Real-Time Workshop > Data
Placement > Data definition

Select the .c or .cpp file
where variables of global
scope are defined.

GlobalDataReference (EC)
Auto, InSourceFile,
InSeparateHeaderFile

Real-Time Workshop > Data
Placement > Data declaration

Select the .h file where
variables of global
scope are declared (for
example, extern real_T
globalvar;).

GRTInterface (EC)
off, on

Real-Time Workshop >
Interface > GRT compatible
call interface

Include a code interface
(wrapper) that is
compatible with the
GRT target.

IgnoreCustomStorageClasses
(EC)
off, on

Real-Time Workshop >
General > Ignore custom
storage classes

Treat custom storage
classes as 'Auto'.

IncAutoGenComments Not available For MathWorks use only.

IncDataTypeInIds
off, on

Real-Time Workshop > Symbol
> Include data type acronym
in identifiers

Include acronyms that
express data types in
signal and work vector
identifiers. For example,
'rtB.i32_signame'
identifies a 32-bit integer
block output signal named
'signame'.

1-11

1 Configuration Parameter Reference

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

IncHierarchyInIds
off, on

Real-Time Workshop >
Symbols > Include system
hierarchy number in
identifiers

Include the system
hierarchy number in
variable identifiers. For
example, 's3_' is the
system hierarchy number
in rtB.s3_signame for a
block output signal named
'signame'. Including the
system hierarchy number
in identifiers improves the
traceability of generated
code. To locate the
subsystem in which the
identifier resides, type
hilite_system('<S3>')
at the MATLAB prompt.
The argument specified
with hilite_system
requires an uppercase S.

IncludeERTFirstTime (EC)
off, on

Not available Specify whether
Real-Time Workshop
Embedded Coder is to
include the firstTime
argument in the
model_initialize
function generated for
a Simulink model.

IncludeFileDelimiter (EC)
Auto, UseQuote, UseBracket

Real-Time Workshop > Data
Placement > #include file
delimiter

Specify the delimiter
to be used for all data
objects that do not have a
delimiter specified in the
IncludeFile property.

1-12

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

IncludeHyperlinkInReport
(EC)
off, on

Real-Time Workshop >
General > Include hyperlinks
to model

Link code segments to
the corresponding block
in the model. This option
increases code generation
time for large models.

IncludeMdlTerminateFcn (EC)
off, on

Real-Time Workshop >
Interface >Terminate function
required

Generate a terminate
function for the model.

IncludeRegionsInRTWFile
BlockHierarchyMap

Not available For MathWorks use only.

IncludeRootSignalInRTWFile Not available For MathWorks use only.

IncludeVirtualBlocksInRTW
FileBlockHierarchyMap

Not available For MathWorks use only.

InitFltsAndDblsToZero (EC)
off, on

Optimization > Use memset to
initialize floats and doubles
to 0.0

Optimize initialization
of storage for float
and double values.
Set this option if
the representation of
floating-point zero used by
your compiler and target
CPU is identical to the
integer bit pattern 0.

InlineInvariantSignals
off, on

Optimization > Inline
invariant signals

Precompute and inline the
values of invariant signals
in the generated code.

InlinedParameterPlacement
(EC)
Hierarchical,
NonHierarchical

Optimization > Parameter
structure

Specify how generated
code stores global
(tunable) parameters.
Specify NonHierarchical
to trade off modularity for
efficiency.

1-13

1 Configuration Parameter Reference

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

InlinedPrmAccess (EC)
Literals, Macros

Real-Time Workshop >
Symbols > Generate scalar
inlined parameters as

Specify whether inlined
parameters are coded
as numeric constants or
macros. Specify Macros
for more efficient code.

InsertBlockDesc (EC)
off, on

Real-Time Workshop >
Comments > Simulink block
descriptions

Insert the contents of the
Description field from
the Block Parameters
dialog box into the
generated code as a
comment.

IsERTTarget Not available For MathWorks use only.

IsPILTarget Not available For MathWorks use only.

LaunchReport
off, on

Real-Time Workshop >
General > Launch report after
code generation completes

Display the HTML report
after code generation
completes.

LifeSpan (EC)
string

Optimization > Application
lifespan (days)

Optimize the size of
counters used to compute
absolute and elapsed
time, using the specified
application life span value.

LocalBlockOutputs
off, on

Optimization > Enable local
block outputs

Declare block outputs
in local (function) scope
wherever possible to
reduce global RAM usage.

LogVarNameModifier
none, rt_, _rt

Real-Time Workshop >
Interface > MAT-file variable
name modifier

Augment the MAT-file
variable name.

MakeCommand
string - make_rtw

Real-Time
Workshop > General > Make
command

Specify the make command
and optional arguments
to be used to generate an
executable for the model.

1-14

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

MangleLength
slint - 1

Real-Time Workshop >
Symbols > Minimum mangle
length

Specify the minimum
number of characters to be
used for name mangling
strings generated and
applied to symbols to
avoid name collisions.
A larger value reduces
the chance of identifier
disturbance when you
modify the model.

MatFileLogging (EC)
off, on

Real-Time Workshop >
Interface > MAT-file logging

Generate code that logs
data to a MATLAB .mat
file.

MaxIdLength
slint - 31

Real-Time Workshop >
Symbols > Maximum
identifier length

Specify the maximum
number of characters that
can be used in generated
function, type definition,
and variable names.

MemSecPackage (EC)
string -
--- None ---

Real-Time Workshop >
Memory Sections > Package

Specify the package that
contains the memory
sections that you want to
apply.

MemSecFuncInitTerm (EC)
string - Default

Real-Time Workshop
> Memory Sections >
Initialize/Terminate

Apply memory sections to:

• Initialize/Start
functions

• Terminate functions

1-15

1 Configuration Parameter Reference

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

MemSecFuncExecute (EC)
string - Default

Real-Time Workshop >
Memory Sections > Execution

Apply memory sections to:

• Step functions

• Run-time initialization
functions

• Derivative functions

• Enable functions

• Disable functions

MemSecDataConstants (EC)
string - Default

Real-Time Workshop >
Memory Sections > Constants

Apply memory sections to:

• Constant parameters

• Constant block I/O

• Zero representation

MemSecDataIO (EC)
string - Default

Real-Time Workshop
> Memory Sections >
Inputs/Outputs

Apply memory sections to:

• Root inputs

• Root outputs

MemSecDataInternal (EC)
string - Default

Real-Time Workshop >
Memory Sections > Internal
data

Apply memory sections to:

• Block I/O

• D-work vectors

• Run-time model

• Zero-crossings

MemSecDataParameters (EC)
string - Default

Real-Time Workshop
> Memory Sections >
Parameters

Apply memory sections to:

• Parameters

1-16

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

ModelReferenceCompliant Not available Set in selectcallback
for a target to indicate
whether the target
supports model reference.

ModuleName (EC)
string

Real-Time Workshop >
Placement > Module name

Specify the name of the
module that owns this
model.

ModuleNamingRule (EC)
Unspecified, SameAsModel,
UserSpecified

Real-Time Workshop > Data
Placement > Module naming

Specify the rule to be used
for naming the module.

MultiInstanceErrorCode (EC)
None, Warning, Error

Real-Time Workshop >
Interface > Reusable code
error diagnostic

Specify the error
diagnostic behavior for
cases when data defined
in the model violates
the requirements for
generation of reusable
code.

MultiInstanceERTCode (EC)
off, on

Real-Time Workshop >
Interface > Reusable code
error diagnostic

Specify the error
diagnostic behavior for
cases when data defined
in the model violates
the requirements for
generation of reusable
code.

NoFixptDivByZeroProtection
(Fixed-Point Toolbox)
off, on

Optimization > Remove code
that protects against division
arithmetic exceptions

Suppress generation of
code that guards against
division by zero for
fixed-point data.

1-17

1 Configuration Parameter Reference

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

OptimizeModelRefInitCode
(EC)
off, on

Optimization > Optimize
initialization code for model
reference

Suppress generation of
initialization code to
accommodate the case
where this model is
referred to by a subsystem
that resets its states when
enabled. Select this option
if the model will never
be referred to by such
a subsystem. Simulink
reports an error if this
constraint is violated, in
which case you can disable
this optimization.

ParamNamingFcn Not available For MathWorks use only.

ParamNamingRule (EC)
None, UpperCase, LowerCase,
Custom

Real-Time Workshop >
Symbols > Parameter naming

Select a rule that changes
spelling of all parameter
names.

ParamTuneLevel (EC)
slint - 10

Real-Time Workshop > Data
Placement > Parameter tune
level

Specify whether the code
generator is to declare a
parameter data object as
tunable global data in the
generated code.

ParenthesesLevel
minimum, nominal, maximum

Real-Time Workshop > Code
Style > Parentheses Level

Control existence of
optional parentheses in
generated code.

PostCodeGenCommand
string

Not available Add the specified post code
generation command to
the model’s build process.

1-18

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

PrefixModelToSubsysFcnNames
off, on

Real-Time Workshop >
Symbols > Prefix model name
to global identifiers

Add the model name as
a prefix to subsystem
function names for all
code formats. When
appropriate for the code
format, also add the
model name as a prefix
to top-level functions and
data structures. This
prevents compiler errors
due to name clashes
when combining multiple
models.

PreserveName Not available For MathWorks use only.

PreserveNameWithParent Not available For MathWorks use only.

ProcessScript Not available For MathWorks use only.

ProcessScriptMode Not available For MathWorks use only.

ProfileTLC
off, on

Real-Time
Workshop > Debug > Profile
TLC

Profile the execution time
of each TLC file used to
generate code for this
model in HTML format.

PurelyIntegerCode (EC)
off, on

Real-Time Workshop >
Interface > floating-point
numbers

Support floating-point
data types in the
generated code. This
option is forced on when
SupportNonInlinedSFcns
is on.

RTWCAPIParams
off, on

Real-Time Workshop >
Interface > Parameters in C
API

Generate parameter
tuning structures in C
API.

RTWCAPISignals
off, on

Real-Time Workshop >
Interface > Signals in C API

Generate signal structure
in C API.

RTWCAPIStates Not available For MathWorks use only.

1-19

1 Configuration Parameter Reference

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

RTWVerbose
off, on

Real-Time Workshop > Debug
> Verbose build

Display messages
indicating code generation
stages and compiler
output.

ReqsInCode (EC)
off, on

Real-Time Workshop >
Comments > Requirements in
block comments

Include specified
requirements in the
generated code as a
comment.

RetainRTWFile
off, on

Real-Time Workshop > Debug
> Retain .rtw file

Retain the model.rtw
file in the current build
directory.

RollThreshold
slint - 5

Optimization > Loop
unrolling threshold

Specify the minimum
signal width for which a
for loop is to be generated.

RootIOFormat (EC)
Individual arguments,
Structure reference

Real-Time Workshop >
Interface > Pass root-level I/O
as

Specify how the code
generator is to pass
root-level I/O data into a
reusable function.

RSIM_STORAGE_CLASS_AUTO Real-Time Workshop > RSim
Target > Force storage classes
to AUTO

Force all storage classes
for a model to Auto.

SaveLog
off, on

Real-Time
Workshop > General > Save
build log

Save build log.

SFDataObjDesc (EC)
off, on

Real-Time Workshop >
Comments > Stateflow object
descriptions

Insert Stateflow object
descriptions into the
generated code as a
comment.

ShowEliminatedStatements
off, on

Real-Time Workshop >
Comments > Show eliminated
blocks

Show statements for
eliminated blocks
as comments in the
generated code.

1-20

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

SignalDisplayLevel (EC)
slint - 10

Real-Time Workshop > Data
Placement > Signal display
level

Specify whether the code
generator is to declare a
signal data object as global
data in the generated code.

SignalLabelMismatchMsg
None, Warning, Error

Diagnostics
> Connectivity > Signal
label mismatch

Specify the diagnostic
action to take when a
signal label mismatch
occurs.

SignalNamingFcn Not available For MathWorks use only.

SignalNamingRule (EC)
None, UpperCase, LowerCase,
Custom

Real-Time Workshop >
Symbols > Signal naming

Specify a rule the code
generator is to use that
changes spelling of all
signal names.

SimulinkBlockComments
off, on

Real-Time Workshop >
Comments > Simulink block
comments

Insert Simulink block
names as comments above
the generated code for
each block.

SimulinkDataObjDesc (EC)
off, on

Real-Time Workshop >
Comments > Simulink data
object descriptions

Insert Simulink data
object descriptions into
the generated code as
comments.

StateBitsets (Stateflow)
off, on

Optimization > Use bit sets
for storing state configuration

Use bit sets for storing
state configuration.

SupportAbsoluteTime (EC)
off, on

Real-Time Workshop >
Interface > absolute time

Support absolute time in
the generated code. Blocks
such as the Discrete
Integrator might require
absolute time.

SupportComplex (EC)
off, on

Real-Time Workshop >
Interface > complex numbers

Support complex data
types in the generated
code.

1-21

1 Configuration Parameter Reference

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

SupportContinuousTime (EC)
off, on

Real-Time Workshop >
Interface > continuous time

Support continuous
time in the generated
code. This allows blocks
to be configured with
a continuous sample
time. Not available if
SuppressErrorStatus is
on.

SupportNonFinite (EC)
off, on

Real-Time Workshop >
Interface > nonfinite numbers

Support nonfinite values
(inf, nan, -inf) in the
generated code. This
option is forced on when
SupportNonInlinedSFcns
is on.

SupportNonInlinedSFcns
off, on

Real-Time Workshop >
Interface > noninlined
S-functions

Support S-functions that
have not been inlined
with a TLC file. Inlined
S-functions generate the
most efficient code.

SuppressErrorStatus (EC)
off, on

Real-Time Workshop >
Interface > Suppress error
status in real-time model data
structure

Remove the error status
field of the real-time model
data structure to preserve
memory. When on,
SupportContinuousTime
is off.

SystemCodeInlineAuto Not available For MathWorks use only.

SystemTargetFile
string

Real-Time Workshop >
General > System target file

Specify a system target
file.

TargetBitPerChar
slint - 8

Hardware
Implementation > Emulation
hardware > char

Specify the number of
bits used to represent the
C/C++ type char.

TargetBitPerInt
slint - 32

Hardware
Implementation > Emulation
hardware > int

Specify the number of
bits used to represent the
C/C++ type int.

1-22

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

TargetBitPerLong
slint - 32

Hardware
Implementation > Emulation
hardware > long

Specify the number of
bits used to represent the
C/C++ type long.

TargetBitPerShort
slint - 16

Hardware
Implementation > Emulation
hardware > short

Specify the number of
bits used to represent the
C/C++ type short.

TargetEndianess
Unspecified, LittleEndian,
BigEndian

Hardware
Implementation > Emulation
hardware > Byte ordering

Specify whether the
byte ordering of the
target is Big Endian
(most significant byte
first) or Little Endian
(least significant byte
first). If left unspecified,
Real-Time Workshop
generates executable code
to compute the result.

TargetFcnLib Not available For MathWorks use only.

TargetHWDeviceType
string

Hardware
Implementation > Emulation
hardware > Device type

Specify a predefined
hardware device to define
the C or C++ language
constraints for your
microprocessor or Custom
if your microprocessor
is not listed. Specify
the string "MATLAB Host
Computer" to target the
current MATLAB host
machine.

1-23

1 Configuration Parameter Reference

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

TargetIntDivRoundTo
Zero, Floor, Undefined

Hardware
Implementation > Emulation
hardware > Signed integer
division rounds to

Specify how your C/C++
compiler rounds the result
of dividing two signed
integers. This information
enables the code generator
to generate efficient C or
C++ code from the model.

TargetLang
C, C++

Real-Time
Workshop > Language

Specify whether
Real-Time Workshop
is to generate C or C++
code.

TargetLibSuffix
string

Not available Control the suffix used
for naming a target’s
dependent libraries (for
example, _target.a).
An example of when
you might use this is for
generated model reference
libraries. If you do not
set this parameter, on a
Windows system, you get
modelName_rtwlib.lib
and on a UNIX
system, you get
modelName_rtwlib.a.

1-24

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

TargetOS (EC)
BareBoardExample,
VxWorksExample

Real-Time Workshop >
Templates > Target operating
system

Specify the target
operating system for the
example main ert_main.c
or ert_main.cpp.
BareBoardExample is
a generic example that
assumes no operating
system. VxWorksExample
is tailored to the VxWorks
real-time operating
system.

TargetPreCompLibLocation
string

Not available Control the location of
precompiled libraries.
If you do not set this
parameter, Real-Time
Workshop uses the
location specified in
rtwmakecfg.m.

TargetPreprocMaxBitsSint
int - 128

Not available Specify the maximum
number of bits that the
target C preprocessor can
use for signed integer
math.

TargetPreprocMaxBitsUint
int - 128

Not available Specify the maximum
number of bits that the
target C preprocessor can
use for unsigned integer
math.

TargetShiftRightIntArith
off, on

Hardware
Implementation > Emulation
hardware > Shift right on a
signed integer as arithmetic
shift

Specify that your C/C++
compiler implements a
right shift of a signed
integer as an arithmetic
right shift. Virtually all
compilers do this.

1-25

1 Configuration Parameter Reference

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

TargetTypeEmulationWarn
SuppressLevel
int - 0

Not available When greater than or
equal to 2, suppress
warning messages that
Real-Time Workshop
displays when emulating
integer sizes in rapid
prototyping environments.

TargetWordSize
slint - 32

Hardware
Implementation > Emulation
hardware > native word size

Specify the number of bits
that the target processor
can process at one time.
Providing the processor’s
native word size allows
for more efficient code
to be generated when
converting the endian
byte order of data types.

TemplateMakefile
string - grt_default_tmf

Real-Time Workshop >
General > Template makefile

Specify the current
template makefile for
building a Real-Time
Workshop target.

TLCAssert
off, on

Real-Time
Workshop > Debug > Enable
TLC assertion

Produce a TLC stack
trace when the argument
to the assert directives
evaluates to false.

TLCCoverage
off, on

Real-Time
Workshop > Debug > Start
TLC coverage when
generating code

Generate .log files
containing the number
of times each line of TLC
code is executed during
code generation.

1-26

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

TLCDebug
off, on

Real-Time
Workshop > Debug > Start
TLC debugger when
generating code

Start the TLC debugger
during code generation at
the beginning of the TLC
program. TLC breakpoint
statements automatically
invoke the TLC debugger
regardless of this setting.

TLCOptions
string

Real-Time
Workshop > General > TLC
options

Specify additional TLC
command line options.

UseTempVars (Stateflow)
off, on

Optimization > Minimize
array reads using temporary
variables

Minimize array reads in
global memory by using
temporary variables.

UtilityFuncGeneration
Auto, Shared location

Real-Time Workshop >
Interface > Utility function
generation

Specify where utility
functions are to be
generated.

ZeroExternalMemoryAt
Startup (EC)
off, on

Optimization > Remove root
level I/O zero initialization

Suppress code that
initializes root-level I/O
data structures to zero.

ZeroInternalMemoryAt
Startup (EC)
off, on

Optimization > Remove
internal state zero
initialization

Suppress code that
initializes global data
structures (for example,
block I/O data structures)
to zero.

1-27

1 Configuration Parameter Reference

1-28

2

Functions — By Category

Build Information (p. 2-2) Set up and manage model’s build
information

Project Documentation (p. 2-4) Document generated code

Rapid Simulation (p. 2-4) Get model’s parameter structures

Target Language Compiler Library
(p. 2-4)

Optimize code generated for model’s
blocks

2 Functions — By Category

Build Information
addCompileFlags Add compiler options to model’s

build information

addDefines Add preprocessor macro definitions
to model’s build information

addIncludeFiles Add include files to model’s build
information

addIncludePaths Add include paths to model’s build
information

addLinkFlags Add link options to model’s build
information

addLinkObjects Add link objects to model’s build
information

addSourceFiles Add source files to model’s build
information

addSourcePaths Add source paths to model’s build
information

findIncludeFiles Find and add include (header) files
to build information object

getCompileFlags Compiler options from model’s build
information

getDefines Preprocessor macro definitions from
model’s build information

getIncludeFiles Include files from model’s build
information

getIncludePaths Include paths from model’s build
information

getLinkFlags Link options from model’s build
information

getSourceFiles Source files from model’s build
information

2-2

Build Information

getSourcePaths Source paths from model’s build
information

packNGo Package model code in zip file for
relocation

updateFilePathsAndExtensions Update files in model’s build
information with missing paths and
file extensions

updateFileSeparator Change file separator used in model’s
build information

2-3

2 Functions — By Category

Project Documentation
rtwReport Document generated code

Rapid Simulation
rsimgetrtp Model’s global parameter structure

Target Language Compiler Library
See the “TLC Function Library Reference” in the Real-Time Workshop Target
Language Compiler documentation.

2-4

3

Functions — Alphabetical
List

addCompileFlags

Purpose Add compiler options to model’s build information

Syntax addCompileFlags(buildinfo, options, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

options
A character array or cell array of character arrays that specifies
the compiler options to be added to the build information. The
function adds each option to the end of a compiler option vector. If
you specify multiple options within a single character array, for
example '-Zi -Wall', the function adds the string to the vector
as a single element. For example, if you add '-Zi -Wall' and
then '-O3', the vector consists of two elements, as shown below.

'-Zi -Wall' '-O3'

groups (optional)
A character array or cell array of character arrays that groups
specified compiler options. You can use groups to

• Document the use of specific compiler options

• Retrieve or apply collections of compiler options

You can apply

• A single group name to a compiler option

• A single group name to multiple compiler options

• Multiple group names to collections of compiler options

3-2

addCompileFlags

To... Specify groups as a...

Apply one group
name to all compiler
options

Character array. To specify compiler
options to be used in the standard
Real-Time Workshop makefile build
process, specify the character array
'OPTS' or 'OPT_OPTS'.

Apply different group
names to compiler
options

Cell array of character arrays such that
the number of group names matches
the number of elements you specify for
options. Available for nonmakefile
build environments only.

Description The addCompileFlags function adds specified compiler options to the
model’s build information. Real-Time Workshop stores the compiler
options in a vector. The function adds options to the end of the vector
based on the order in which you specify them.

In addition to the required buildinfo and options arguments, you can
use an optional groups argument to group your options.

Examples • Add the compiler option -O3 to build information myModelBuildInfo
and place the option in the group MemOpt.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, '-O3','MemOpt');

• Add the compiler options -Zi and -Wall to build information
myModelBuildInfo and place the options in the group Debug.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, '-Zi -Wall','Debug');

3-3

addCompileFlags

• Add the compiler options -Zi, -Wall, and -O3 to build information
myModelBuildInfo. Place the options -Zi and -Wall in the group
Debug and option -O3 in the group MemOpt.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-O3'},
{'Debug' 'MemOpt'});

See Also addDefines, addLinkFlags
“Programming a Post Code Generation
Command”

3-4

addDefines

Purpose Add preprocessor macro definitions to model’s build information

Syntax addDefines(buildinfo, macrodefs, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

macrodefs
A character array or cell array of character arrays that specifies
the preprocessor macro definitions to be added to the object. The
function adds each definition to the end of a compiler option vector.
If you specify multiple definitions within a single character array,
for example '-DRT -DDEBUG', the function adds the string to the
vector as a single element. For example, if you add '-DPROTO
-DDEBUG' and then '-DPRODUCTION', the vector consists of two
elements, as shown below.

'-DPROTO -DDEBUG' '-DPRODUCTION'

groups (optional)
A character array or cell array of character arrays that groups
specified definitions. You can use groups to

• Document the use of specific macro definitions

• Retrieve or apply groups of macro definitions

You can apply

• A single group name to an macro definition

• A single group name to multiple macro definitions

• Multiple group names to collections of multiple macro
definitions

3-5

addDefines

To... Specify groups as a...

Apply one group
name to all macro
definitions

Character array. To specify macro
definitions to be used in the standard
Real-Time Workshop makefile build
process, specify the character array
'OPTS' or 'OPT_OPTS'.

Apply different group
names to macro
definitions

Cell array of character arrays such that
the number of group names matches
the number elements you specify for
macrodefs. Available for nonmakefile
build environments only.

Description The addDefines function adds specified preprocessor macro definitions
to the model’s build information. Real-Time Workshop stores the
definitions in a vector. The function adds definitions to the end of the
vector based on the order in which you specify them.

In addition to the required buildinfo and macrodefs arguments, you
can use an optional groups argument to group your options.

Examples • Add the macro definition -DPRODUCTION to build information
myModelBuildInfo and place the definition in the group Release.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo, '-DPRODUCTION','Release');

• Add the macro definitions -DPROTO and -DDEBUG to build information
myModelBuildInfo and place the definitions in the group Debug.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo, '-DPROTO -DDEBUG','Debug');

3-6

addDefines

• Add the compiler definitions -DPROTO, -DDEBUG, and -DPRODUCTION,
to build information myModelBuildInfo. Group the definitions
-DPROTO and -DDEBUG with the string Debug and the definition
-DPRODUCTION with the string Release.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo, {'-DPROTO -DDEBUG'
'-DPRODUCTION'}, {'Debug' 'Release'});

See Also addCompileFlags, addLinkFlags
“Programming a Post Code Generation Command”

3-7

addIncludeFiles

Purpose Add include files to model’s build information

Syntax addIncludeFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

filenames
A character array or cell array of character arrays that specifies
names of include files to be added to the build information. The
function adds the filenames to the end of a vector in the order that
you specify them.

The function removes duplicate include file entries that

• You specify as input

• Already exist in the include file vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)
A character array or cell array of character arrays that specifies
paths to the include files. The function adds the paths to the end of
a vector in the order that you specify them. If you specify a single
path as a character array, the function uses that path for all files.

groups (optional)
A character array or cell array of character arrays that groups
specified include files. You can use groups to

• Document the use of specific include files

• Retrieve or apply groups of include files

3-8

addIncludeFiles

You can apply

• A single group name to an include file

• A single group name to multiple include files

• Multiple group names to collections of multiple include files

To... Specify groups as a...

Apply one group name
to all include files

Character array.

Apply different group
names to include files

Cell array of character arrays such
that the number of group names that
you specify matches the number of
elements you specify for filenames.

Description The addIncludeFiles function adds specified include files to the
model’s build information. Real-Time Workshop stores the include files
in a vector. The function adds the filenames to the end of the vector in
the order that you specify them.

In addition to the required buildinfo and filenames arguments, you
can specify optional paths and groups arguments. You can specify each
optional argument as a character array or a cell array of character
arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all
include files it adds to the build
information

Cell array of character arrays Pairs each character array with a
specified include file. Thus, the length
of the cell array must match the
length of the cell array you specify for
filenames.

3-9

addIncludeFiles

If you choose to specify groups, but omit paths, specify a null string
('') for paths.

Examples • Add the include file mytypes.h to build information
myModelBuildInfo and place the file in the group SysFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo,...
'mytypes.h', 'SysFiles');

• Add the include files etc.h and etc_private.h to build information
myModelBuildInfo and place the files in the group AppFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo,...
{'etc.h' 'etc_private.h'}, 'AppFiles');

• Add the include files etc.h, etc_private.h, and mytypes.h to
build information myModelBuildInfo. Group the files etc.h and
etc_private.h with the string AppFiles and the file mytypes.h
with the string SysFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo,...
{'etc.h' 'etc_private.h' 'mytypes.h'},...
{'AppFiles' 'AppFiles' 'SysFiles'});

See Also addIncludePaths, addSourceFiles, addSourcePaths,
updateFilePathsAndExtensions, updateFileSeparator
“Programming a Post Code Generation Command”

3-10

addIncludePaths

Purpose Add include paths to model’s build information

Syntax addIncludePaths(buildinfo, paths, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

paths
A character array or cell array of character arrays that specifies
include file paths to be added to the build information. The
function adds the paths to the end of a vector in the order that
you specify them.

The function removes duplicate include file entries that

• You specify as input

• Already exist in the include path vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

groups (optional)
A character array or cell array of character arrays that groups
specified include paths. You can use groups to

• Document the use of specific include paths

• Retrieve or apply groups of include paths

You can apply

• A single group name to an include path

• A single group name to multiple include paths

• Multiple group names to collections of multiple include paths

3-11

addIncludePaths

To... Specify groups as a...

Apply one group
name to all include
paths

Character array.

Apply different group
names to include
paths

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for paths.

Description The addIncludePaths function adds specified include paths to the
model’s build information. Real-Time Workshop stores the include
paths in a vector. The function adds the paths to the end of the vector in
the order that you specify them.

In addition to the required buildinfo and paths arguments, you can
specify an optional groups argument. You can specify groups as a
character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all
include paths it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified include path. Thus, the
length of the cell array must match
the length of the cell array you specify
for paths.

3-12

addIncludePaths

Examples • Add the include path /etcproj/etc/etc_build to build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo,...
'/etcproj/etc/etc_build');

• Add the include paths /etcproj/etclib and
/etcproj/etc/etc_build to build information myModelBuildInfo
and place the files in the group etc.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo,...
{'/etcproj/etclib' '/etcproj/etc/etc_build'},'etc');

• Add the include paths /etcproj/etclib, /etcproj/etc/etc_build,
and /common/lib to build information myModelBuildInfo. Group the
paths /etc/proj/etclib and /etcproj/etc/etc_build with the
string etc and the path /common/lib with the string shared.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo,...
{'/etc/proj/etclib' '/etcproj/etc/etc_build'...
'/common/lib'}, {'etc' 'etc' 'shared'});

See Also addIncludeFiles, addSourceFiles, addSourcePaths,
updateFilePathsAndExtensions, updateFileSeparator
“Programming a Post Code Generation Command”

3-13

addLinkFlags

Purpose Add link options to model’s build information

Syntax addLinkFlags(buildinfo, options, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

options
A character array or cell array of character arrays that specifies
the linker options to be added to the build information. The
function adds each option to the end of a linker option vector. If
you specify multiple options within a single character array, for
example '-MD -Gy', the function adds the string to the vector as a
single element. For example, if you add '-MD -Gy' and then '-T',
the vector consists of two elements, as shown below.

'-MD -Gy' '-T'

groups (optional)
A character array or cell array of character arrays that groups
specified linker options. You can use groups to

• Document the use of specific linker options

• Retrieve or apply groups of linker options

You can apply

• A single group name to a compiler option

• A single group name to multiple compiler options

• Multiple group names to collections of multiple compiler options

3-14

addLinkFlags

To... Specify groups as a...

Apply one group
name to all linker
options

Character array. To specify linker
options to be used in the standard
Real-Time Workshop makefile build
process, specify the character array
'OPTS' or 'OPT_OPTS'.

Apply different
group names to
linker options

Cell array of character arrays such that
the number of group names matches
the number of elements you specify for
options. Available for nonmakefile
build environments only.

Description The addLinkFlags function adds specified linker options to the model’s
build information. Real-Time Workshop stores the linker options in a
vector. The function adds options to the end of the vector based on the
order in which you specify them.

In addition to the required buildinfo and options arguments, you can
use an optional groups argument to group your options.

Examples • Add the linker -T option to build information myModelBuildInfo and
place the option in the group Temp.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, '-T','Temp');

• Add the linker options -MD and -Gy to build information
myModelBuildInfo and place the options in the group Debug.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, '-MD -Gy','Debug');

3-15

addLinkFlags

• Add the linker options -MD, -Gy, and -T to build information
myModelBuildInfo. Place the options -MD and-Gy in the group Debug
and the option -T in the groupTemp.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'},
{'Debug' 'Temp'});

See Also addCompileFlags, addDefines
“Programming a Post Code Generation
Command”

3-16

addLinkObjects

Purpose Add link objects to model’s build information

Syntax addLinkObjects(buildinfo, linkobjs, paths, priority,
precompiled, linkonly, groups)

All arguments except buildinfo , linkobjs, and paths are optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

linkobjs
A character array or cell array of character arrays that specifies
the filenames of linkable objects to be added to the build
information. The function adds the filenames that you specify
in the function call to a vector that stores the object filenames
in priority order. If you specify multiple objects that have the
same priority (see priority below), the function adds them to the
vector based on the order in which you specify the object filenames
in the cell array.

The function removes duplicate link objects that

• You specify as input

• Already exist in the linkable object filename vector

• Have a path that matches the path of a matching linkable
object filename

A duplicate entry consists of an exact match of a path string and
corresponding linkable object filename.

paths (optional)
A character array or cell array of character arrays that specifies
paths to the linkable objects. If you specify a character array, the
path string applies to all linkable objects.

3-17

addLinkObjects

priority (optional)
A numeric value or vector of numeric values that indicates the
relative priority of each specified link object. Lower values have
higher priority. The default priority is 1000.

precompiled (optional)
The logical value true or false or a vector of logical values that
indicates whether each specified link object is precompiled.

linkonly (optional)
The logical value true or false or a vector of logical values that
indicates whether each specified link object is to be only linked. If
you set this argument to false, the function also adds a rule to
the makefile for building the objects.

groups (optional)
A character array or cell array of character arrays that groups
specified link objects. You can use groups to

• Document the use of specific link objects

• Retrieve or apply groups of link objects

You can apply

• A single group name to a linkable object

• A single group name to multiple linkable objects

• Multiple group name to collections of multiple linkable objects

To... Specify groups a...

Apply one group
name to all link
objects

Character array.

Apply different group
names to link objects

Cell array of character arrays such that
the number of group names matches
the number elements you specify for
linkobjs.

3-18

addLinkObjects

Description The addLinkObjects function adds specified link objects to the model’s
build information. Real-Time Workshop stores the link objects in a
vector in relative priority order. If multiple objects have the same
priority or you do not specify priorities, the function adds the objects to
the vector based on the order in which you specify them.

In addition to the required buildinfo and linkobjs arguments,
you can specify any combination of the optional arguments paths,
priority, precompiled, linkable, and groups. You can specify paths
and groups as a character array or a cell array of character arrays.

If You Specify paths or
groups as a...

The Function...

Character array Applies the character array to
all objects it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified object. Thus, the length
of the cell array must match the
length of the cell array you specify for
linkobjs.

Similarly, you can specify priority, precompiled, and linkable as a
value or vector of values.

If You Specify priority,
precompiled, or linkable
as a...

The Function...

Value Applies the value to all objects it adds
to the build information.

Vector of values Pairs each value with a specified
object. Thus, the length of the vector
must match the length of the cell
array you specify for linkobjs.

3-19

addLinkObjects

For any optional argument you choose to omit between linkobjs and
any other argument, specify a null string (''). For example, to specify
that all objects are precompiled, without specifying paths or priorities,
you might call addLinkObjects as

addLinkObjects(myBuildInfo, {'test1' test2' 'test3'},...
'', '', true);

Examples • Add the linkable objects libobj1 and libobj2 to build information
myModelBuildInfo and set the priorities of the objects to 26 and 10,
respectively. Since libobj2 is assigned the lower numeric priority
value, and thus has the higher priority, the function orders the
objects such that libobj2 precedes libobj1 in the vector.

myModelBuildInfo = RTW.BuildInfo;
addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...
{'/proj/lib/lib1' '/proj/lib/lib2'}, [26 10]);

• Add the linkable objects libobj1 and libobj2 to build information
myModelBuildInfo. Mark both objects as linkable. Since priorities
are not specified, the function adds the objects to the vector in the
order specified.

myModelBuildInfo = RTW.BuildInfo;
addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...
{'/proj/lib/lib1' '/proj/lib/lib2'}, [26 10],...
false, true);

• Add the linkable objects libobj1 and libobj2 to build information
myModelBuildInfo. Set the priorities of the objects to 26 and 10,
respectively. Mark both objects as precompiled, but not linkable,
and group them MyTest.

myModelBuildInfo = RTW.BuildInfo;
addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...
{'/proj/lib/lib1' '/proj/lib/lib2'}, [26 10],...
true, false, 'MyTest');

3-20

addLinkObjects

See Also “Programming a Post Code Generation Command”

3-21

addSourceFiles

Purpose Add source files to model’s build information

Syntax addSourceFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

filenames
A character array or cell array of character arrays that specifies
names of the source files to be added to the build information. The
function adds the filenames to the end of a vector in the order that
you specify them.

The function removes duplicate source file entries that

• You specify as input

• Already exist in the source file vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)
A character array or cell array of character arrays that specifies
paths to the source files. The function adds the paths to the end of
a vector in the order that you specify them. If you specify a single
path as a character array, the function uses that path for all files.

groups (optional)
A character array or cell array of character arrays that groups
specified source files. You can use groups to

• Document the use of specific source files

• Retrieve or apply groups of source files

3-22

addSourceFiles

You can apply

• A single group name to a source file

• A single group name to multiple source files

• Multiple group names to collections of multiple source files

To... Specify group as a...

Apply one group name
to all source files

Character array.

Apply different group
names to source files

Cell array of character arrays such
that the number of group names that
you specify matches the number of
elements you specify for filenames.

Description The addSourceFiles function adds specified source files to the model’s
build information. Real-Time Workshop stores the source files in a
vector. The function adds the filenames to the end of the vector in the
order that you specify them.

In addition to the required buildinfo and filenames arguments, you
can specify optional paths and groups arguments. You can specify each
optional argument as a character array or a cell array of character
arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all
source files it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified source file. Thus, the length
of the cell array must match the
length of the cell array you specify for
filenames.

3-23

addSourceFiles

If you choose to specify groups, but omit paths, specify a null string
('') for paths.

Examples • Add the source file driver.c to build information myModelBuildInfo
and place the file in the group Drivers.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo, 'driver.c', '',...
'Drivers');

• Add the source files test1.c and test2.c to build information
myModelBuildInfo and place the files in the group Tests.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo,...
{'test1.c' 'test2.c'}, '', 'Tests');

• Add the source files test1.c, test2.c, and driver.c to build
information myModelBuildInfo. Group the files test1.c and
test2.c with the string Tests and the file driver.c with the string
Drivers.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo,...
{'test1.c' 'test2.c' 'driver.c'}, '',...
{'Tests' 'Tests' 'Drivers'});

See Also addIncludeFiles, addIncludePaths, addSourcePaths,
updateFilePathsAndExtensions, updateFileSeparator
“Programming a Post Code Generation Command”

3-24

addSourcePaths

Purpose Add source paths to model’s build information

Syntax addSourcePaths(buildinfo, paths, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

paths
A character array or cell array of character arrays that specifies
source file paths to be added to the build information. The
function adds the paths to the end of a vector in the order that
you specify them.

The function removes duplicate source file entries that

• You specify as input

• Already exist in the source path vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

Note Real-Time Workshop does not check whether a specified
path string is valid.

groups (optional)
A character array or cell array of character arrays that groups
specified source paths. You can use groups to

• Document the use of specific source paths

• Retrieve or apply groups of source paths

3-25

addSourcePaths

You can apply

• A single group name to a source path

• A single group name to multiple source paths

• Multiple group names to collections of multiple source paths

To... Specify groups as a...

Apply one group name
to all source paths

Character array.

Apply different group
names to source paths

Cell array of character arrays such
that the number of group names that
you specify matches the number of
elements you specify for paths.

Description The addSourcePaths function adds specified source paths to the model’s
build information. Real-Time Workshop stores the source paths in a
vector. The function adds the paths to the end of the vector in the order
that you specify them.

In addition to the required buildinfo and paths arguments, you can
specify an optional groups argument . You can specify groups as a
character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to all
source paths it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified source path. Thus, the
length of the character array or cell
array must match the length of the
cell array you specify for paths.

3-26

addSourcePaths

Note Real-Time Workshop does not check whether a specified path
string is valid.

Examples • Add the source path /etcproj/etc/etc_build to build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo,...
'/etcproj/etc/etc_build');

• Add the source paths /etcproj/etclib and
/etcproj/etc/etc_build to build information myModelBuildInfo
and place the files in the group etc.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo,...
{'/etcproj/etclib' '/etcproj/etc/etc_build'}, 'etc');

• Add the source paths /etcproj/etclib, /etcproj/etc/etc_build,
and /common/lib to build information myModelBuildInfo. Group the
paths /etc/proj/etclib and /etcproj/etc/etc_build with the
string etc and the path /common/lib with the string shared.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo,...
{'/etc/proj/etclib' '/etcproj/etc/etc_build'...
'/common/lib'}, {'etc' 'etc' 'shared'});

See Also addIncludeFiles, addIncludePaths, addSourceFiles,
updateFilePathsAndExtensions, updateFileSeparator
“Programming a Post Code Generation Command”

3-27

findIncludeFiles

Purpose Find and add include (header) files to build information object

Syntax findIncludeFiles(buildinfo, extPatterns)

extPatterns is optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

extPatterns (optional)
A cell array of character arrays that specify patterns of file name
extensions for which the function is to search. Each pattern

• Must start with *.

• Can include any combination of alphanumeric and underscore
(_) characters

The default pattern is *.h.

Examples of valid patterns include

*.h
*.hpp
.x

Description The findIncludeFiles function

• Searches for include files, based on specified file name extension
patterns, in all source and include paths recorded in a model’s build
information object

• Adds the files found, along with their full paths, to the build
information object

• Deletes duplicate entries

3-28

findIncludeFiles

Examples Find all include files with filename extension .h that are in build
information object myModelBuildInfo, and add the full paths for any
files found to the object.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, {fullfile(pwd,...
'mycustomheaders')}, 'myheaders');
findIncludeFiles(myModelBuildInfo);
headerfiles = getIncludeFiles(myModelBuildInfo, true, false);
headerfiles
headerfiles =

'W:\work\mycustomheaders\myheader.h'

See Also “Programming a Post Code Generation Command”

3-29

getCompileFlags

Purpose Compiler options from model’s build information

Syntax options=getCompileFlags(buildinfo, includeGroups,
excludeGroups)

includeGroups and excludeGroups are optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of compiler flags you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of compiler flags you do not want the function to return.

Returns Compiler options stored in the model’s build information.

Description The getCompileFlags function returns compiler options stored in
the model’s build information. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude
groups of options the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string ('') for includeGroups.

Examples • Get all compiler options stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-O3'},...
{'Debug' 'MemOpt'});

3-30

getCompileFlags

compflags=getCompileFlags(myModelBuildInfo);
compflags

compflags =

'-Zi -Wall' '-O3'

• Get the compiler options stored with the group name Debug in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-O3'},...
{'Debug' 'MemOpt'});
compflags=getCompileFlags(myModelBuildInfo, 'Debug');
compflags

compflags =

'-Zi -Wall'

• Get all compiler options stored in build information
myModelBuildInfo except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-O3'},...
{'Debug' 'MemOpt'});
compflags=getCompileFlags(myModelBuildInfo, '', 'Debug');
compflags

compflags =

'-O3'

See Also getDefines, getLinkFlags
“Programming a Post Code Generation
Command”

3-31

getDefines

Purpose Preprocessor macro definitions from model’s build information

Syntax [macrodefs, identifiers, values]=getDefines(buildinfo,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of macro definitions you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of macro definitions you do not want the function to return.

Returns Preprocessor macro definitions stored in the model’s build information.
The function returns the macro definitions in three vectors.

Vector Description

macrodef Complete macro definitions with -D
prefix

identifiers Names of the macros

values Values assigned to the macros (anything
specified to the right of the first equals
sign) ; the default is an empty string ('')

3-32

getDefines

Description The getDefines function returns preprocessor macro definitions
stored in the model’s build information. When the function returns a
definition, it automatically

• Prepends a -D to the definition if the -D was not specified when the
definition was added to the build information

• Changes a lowercase -d to -D

Using optional includeGroups and excludeGroups arguments, you
can selectively include or exclude groups of definitions the function
is to return.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string ('') for includeGroups.

Examples • Get all preprocessor macro definitions stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo, {'PROTO=first' '-DDEBUG'...
'test' '-dPRODUCTION'}, {'Debug' 'Debug' 'Debug'...
'Release'});
[defs names values]=getDefines(myModelBuildInfo);
defs

defs =

'-DPROTO=first' '-DDEBUG' '-Dtest' '-DPRODUCTION'

names

names =

'PROTO'
'DEBUG'
'test'
'PRODUCTION'

3-33

getDefines

values

values =

'first'
''
''
''

• Get the preprocessor macro definitions stored with the group name
Debug in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo, {'PROTO=first' '-DDEBUG'...
'test' '-dPRODUCTION'}, {'Debug' 'Debug' 'Debug'...
'Release'});
[defs names values]=getDefines(myModelBuildInfo, 'Debug');
defs

defs =

'-DPROTO=first' '-DDEBUG' '-Dtest'

• Get all preprocessor macro definitions stored in build information
myModelBuildInfo except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo, {'PROTO=first' '-DDEBUG'...
'test' '-dPRODUCTION'}, {'Debug' 'Debug' 'Debug'...
'Release'});
[defs names values]=getDefines(myModelBuildInfo, 'Debug');
defs

defs =

'-DPRODUCTION'

3-34

getDefines

See Also getCompileFlags, getLinkFlags
“Programming a Post Code Generation Command”

3-35

getIncludeFiles

Purpose Include files from model’s build information

Syntax files=getIncludeFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename
with its corresponding path.

false Returns only filenames.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT)
with the absolute path string for your
MATLAB installation directory.

false Does not replace the token
$(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include files you do not want the function to return.

3-36

getIncludeFiles

Returns Names of include files stored in the model’s build information.

Description The getIncludeFiles function returns the names of include files
stored in the model’s build information. Use the concatenatePaths and
replaceMatlabroot arguments to control whether the function includes
paths and your MATLAB root definition in the output it returns. Using
optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of include files the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string ('') for includeGroups.

Examples • Get all include paths and filenames stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo, {'etc.h' 'etc_private.h'...
'mytypes.h'}, {'/etc/proj/etclib' '/etcproj/etc/etc_build'...
'/common/lib'}, {'etc' 'etc' 'shared'});
incfiles=getIncludeFiles(myModelBuildInfo, true, false);
incfiles

incfiles =

[1x22 char] [1x36 char] [1x21 char]

3-37

getIncludeFiles

• Get the names of include files in group etc that are stored in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo, {'etc.h' 'etc_private.h'...
'mytypes.h'}, {'/etc/proj/etclib' '/etcproj/etc/etc_build'...
'/common/lib'}, {'etc' 'etc' 'shared'});
incfiles=getIncludeFiles(myModelBuildInfo, false, false,...
'etc');
incfiles

incfiles =

'etc.h' 'etc_private.h'

See Also getIncludePaths, getSourceFiles, getSourcePaths
“Programming a Post Code Generation Command”

3-38

getIncludePaths

Purpose Include paths from model’s build information

Syntax files=getIncludePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT)
with the absolute path string for your
MATLAB installation directory.

false Does not replace the token
$(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include paths you do not want the function to return.

Returns Paths of include files stored in the model’s build information.

Description The getIncludePaths function returns the names of include file paths
stored in the model’s build information. Use the replaceMatlabroot
argument to control whether the function includes your MATLAB root
definition in the output it returns. Using optional includeGroups
and excludeGroups arguments, you can selectively include or exclude
groups of include file paths the function returns.

3-39

getIncludePaths

If you choose to specify excludeGroups and omit includeGroups,
specify a null string ('') for includeGroups.

Examples • Get all include paths stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo, {'/etc/proj/etclib'...
'/etcproj/etc/etc_build' '/common/lib'},...
{'etc' 'etc' 'shared'});
incpaths=getIncludePaths(myModelBuildInfo, false);
incpaths

incpaths =

'\etc\proj\etclib' [1x22 char] '\common\lib'

• Get the paths in group shared that are stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo, {'/etc/proj/etclib'...
'/etcproj/etc/etc_build' '/common/lib'},...
{'etc' 'etc' 'shared'});
incpaths=getIncludePaths(myModelBuildInfo, false, 'shared');
incpaths

incpaths =

'\common\lib''

See Also getIncludeFiles, getSourceFiles, getSourcePaths
“Programming a Post Code Generation Command”

3-40

getLinkFlags

Purpose Link options from model’s build information

Syntax options=getLinkFlags(buildinfo, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

includeGroups (optional)
A character array or cell array that specifies groups of linker flags
you want the function to return.

excludeGroups (optional)
A character array or cell array that specifies groups of linker
flags you do not want the function to return. To exclude groups
and not include specific groups, specify an empty cell array ('')
for includeGroups.

Returns Linker options stored in the model’s build information.

Description The getLinkFlags function returns linker options stored in the model’s
build information. Using optional includeGroups and excludeGroups
arguments, you can selectively include or exclude groups of options
the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string ('') for includeGroups.

3-41

getLinkFlags

Examples • Get all linker options stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'},...
{'Debug' 'MemOpt'});
linkflags=getLinkFlags(myModelBuildInfo);
linkflags

linkflags =

'-MD -Gy' '-T'

• Get the linker options stored with the group name Debug in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'},...
{'Debug' 'MemOpt'});
linkflags=getLinkFlags(myModelBuildInfo, {'Debug'});
linkflags

linkflags =

'-MD -Gy'

• Get all compiler options stored in build information
myModelBuildInfo except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'},...
{'Debug' 'MemOpt'});
linkflags=getLinkFlags(myModelBuildInfo, '', {'Debug'});
linkflags

linkflags =

'-T'

3-42

getLinkFlags

See Also getCompileFlags, getDefines
“Programming a Post Code Generation
Command”

3-43

getSourceFiles

Purpose Source files from model’s build information

Syntax srcfiles=getSourceFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename
with its corresponding path.

false Returns only filenames.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT)
with the absolute path string for your
MATLAB installation directory.

false Does not replace the token
$(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source files you do not want the function to return.

3-44

getSourceFiles

Returns Names of source files stored in the model’s build information.

Description The getSourceFiles function returns the names of source files stored
in the model’s build information. Use the concatenatePaths and
replaceMatlabroot arguments to control whether the function includes
paths and your MATLAB root definition in the output it returns. Using
optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of source files the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string ('') for includeGroups.

Examples • Get all source paths and filenames stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo,...
{'test1.c' 'test2.c' 'driver.c'}, '',...
{'Tests' 'Tests' 'Drivers'});
srcfiles=getSourceFiles(myModelBuildInfo, false, false);
srcfiles

srcfiles =

'test1.c' 'test2.c' 'driver.c'

3-45

getSourceFiles

• Get the names of source files in group tests that are stored in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo, {'test1.c' 'test2.c'...
'driver.c'}, {'/proj/test1' '/proj/test2'...
'/drivers/src'}, {'tests', 'tests', 'drivers'});
incfiles=getSourceFiles(myModelBuildInfo, false, false,...
'tests');
incfiles

incfiles =

'test1.c' 'test2.c'

See Also getIncludeFiles, getIncludePaths, getSourcePaths
“Programming a Post Code Generation Command”

3-46

getSourcePaths

Purpose Source paths from model’s build information

Syntax files=getSourcePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

Arguments buildinfo
Build information returned by RTW.Buildinfo.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation directory.

false Does not replace the token
$(MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source paths you do not want the function to return.

Returns Paths of source files stored in the model’s build information.

Description The getSourcePaths function returns the names of source file paths
stored in the model’s build information. Use the replaceMatlabroot
argument to control whether the function includes your MATLAB root
definition in the output it returns. Using optional includeGroups
and excludeGroups arguments, you can selectively include or exclude
groups of source file paths the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string ('') for includeGroups.

3-47

getSourcePaths

Examples • Get all source paths stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, {'/proj/test1'...
'/proj/test2' '/drivers/src'}, {'tests' 'tests'...
'drivers'});
srcpaths=getSourcePaths(myModelBuildInfo, false);
srcpaths

srcpaths =

'\proj\test1' '\proj\test2' '\drivers\src'

• Get the paths in group tests that are stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, {'/proj/test1'...
'/proj/test2' '/drivers/src'}, {'tests' 'tests'...
'drivers'});
srcpaths=getSourcePaths(myModelBuildInfo, true, 'tests');
srcpaths

srcpaths =

'\proj\test1' '\proj\test2'

• Get a path stored in build information myModelBuildInfo. First get
the path without replacing $(MATLAB_ROOT) with an absolute path,
then get it with replacement. The MATLAB root directory in this
case is \\myserver\myworkspace\matlab.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, fullfile(matlabroot,...
'rtw', 'c', 'libsrc'));

srcpaths=getSourcePaths(myModelBuildInfo, false);
srcpaths{:}

3-48

getSourcePaths

ans =

$(MATLAB_ROOT)\rtw\c\libsrc

srcpaths=getSourcePaths(myModelBuildInfo, true);
srcpaths{:}

ans =

\\myserver\myworkspace\matlab\rtw\c\libsrc

See Also getIncludeFiles, getIncludePaths, getSourceFiles
“Programming a Post Code Generation Command”

3-49

packNGo

Purpose Package model code in zip file for relocation

Syntax packNGo(buildinfo, propVals...)

propVals is optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

propVals (optional)
A cell array of property-value pairs that specify packaging details.

To... Specify Property... With Value...

Package all model code files in a zip
file as a single, flat directory

'packType' 'flat' (default)

Package model code files hierarchically
in a primary zip file that contains
three secondary zip files:
• mlrFiles.zip — files in your

matlabroot directory tree

• sDirFiles.zip — files in and under
your build directory

• otherFiles.zip — required files
not in the matlabroot or start
directory trees

'packType' 'hierarchical'Paths
for files in the
secondary zip files
are relative to the root
directory of the primary
zip file.

Specify a file name for the primary zip
file

'fileName' 'string'
Default:'model.zip'
If you omit the .zip file
extension, the function
adds it for you.

Description The packNGo function packages the following code files in a compressed
zip file so you can relocate, unpack, and rebuild them in another
development environment:

3-50

packNGo

• Source files (for example, .c and .cpp)

• Header files (for example, .h and .hpp)

• MAT-file that contains the model’s build information object (.mat)

You might use this function to relocate files so they can be recompiled for
a specific target environment or rebuilt in a development environment
in which MATLAB is not installed.

By default, the function packages the files as a flat directory structure
in a zip file named model.zip. You can tailor the output by specifying
property name and value pairs as explained above.

After relocating the zip file, use a standard zip utility to unpack the
compressed file.

Examples • Package the code files for model zingbit in the file zingbit.zip as a
flat directory structure.

set_param('zingbit','PostCodeGenCommand','packNGo(buildInfo);');

Then, rebuild the model.

• Package the code files for model zingbit in the file portzingbit.zip
and maintain the relative file hierarchy.

cd zingbat_grt_rtw;
load buildInfo.mat
packNGo(buildInfo, {'packType', 'hierarchical', ...
'fileName', 'portzingbit'});

See Also “Programming a Post Code Generation Command”
“Relocating Code to Another Development Environment”

3-51

rtwReport

Purpose Document generated code

Syntax rtwReport(model, dir)

dir is optional.

Arguments model
The model for which generated code is to be documented.

dir (optional)
The directory that contains the generated code. Specify this
argument only if the build directory is not in the current directory
or in the directory that stores the model. The directory you specify
must be a standard build directory and its parent directory must
include the model’s project directory (slprj) .

Description The rtwReport function generates a report that documents the code
generated by Real-Time Workshop for a specified model. If necessary,
the function loads the model and generates code before generating the
report, which includes:

• Snapshots of block diagrams of the model and its subsystems

• Block execution order

• Summary of the generated code

• Full listings of the generated code that resides in the build directory

By default, Real-Time Workshop names the generated report
codegen.html and places the file in the current directory. If you specify
an optional directory, Real-Time Workshop places the file codegen.html
in the parent directory of the specified directory. If the specified
directory is not found, an error results and Real-Time Workshop does
not attempt to generate code for the model.

Example Generate a report for mymodel.

rtwReport(mymodel);

3-52

rtwReport

See Also “Documenting a Code Generation Project”

3-53

rsimgetrtp

Purpose Model’s global parameter structure

Syntax rsimgetrtp(model, option)

option is optional.

Arguments model
The model for which you are running the rapid simulations.

option (optional)
The parameter-value pair 'AddTunableParamInfo' 'value',
where value can be 'on' or 'off'. If you set the parameter
to 'on', Real-Time Workshop extracts tunable parameter
information from the specified model and returns it to
param_struct.

Returns A structure that contains the specified model’s parameter structure.

Description The rsimgetrtp function forces an update diagram action for the
specified model and returns a structure that contains the following
fields:

3-54

rsimgetrtp

Field Description

modelChecksum A four-element vector that encodes the
structure of the model. Real-Time Workshop
uses the checksum to check whether the
structure of the model has changed since
the RSim executable was generated. If you
delete or add a block, and then generate a
new model_P vector, the new checksum no
longer matches the original checksum. The
RSim executable detects this incompatibility
in parameter vectors and exits to avoid
returning incorrect simulation results. If
the model structure changes, you must
regenerate the code for the model.

parameters A structure that contains the model’s global
parameters.

The parameters substructure includes the following fields:

Field Description

dataTypeName The name of the parameter’s data type, for
example, double

dataTypeID An internal data type identifier that
Real-Time Workshop uses

complex The value 0 if real and 1 if complex

dtTransIdx Internal use only

values A vector of parameter values

If you specify 'AddTunableParamInfo', 'on', Real-Time Workshop
creates and then deletes model.rtw from your current working directory
and includes a map substructure that has the following fields:

3-55

rsimgetrtp

Field Description

Identifier Parameter name

ValueIndicies A vector of indices to the parameter values

Dimensions A vector indicating the parameter
dimensions

To use the AddTunableParamInfo option, you must enable inline
parameters.

3-56

rsimgetrtp

Examples Returns the parameter structure for model rtwdemo_rsimtf to
param_struct.

rtwdemo_rsimtf
param_struct = rsimgetrtp('rtwdemo_rsimtf')

param_struct =

modelChecksum: [1.7165e+009 3.0726e+009 2.6061e+009
2.3064e+009]

parameters: [1x1 struct]

See Also “Creating a MAT-File That Includes a Model’s Parameter Structure”

3-57

updateFilePathsAndExtensions

Purpose Update files in model’s build information with missing paths and file
extensions

Syntax updateFilePathsAndExtensions(buildinfo, extensions)

extensions is optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

extensions (optional)
A cell array of character arrays that specifies the extensions
(file types) of files for which to search and include in the update
processing. By default, the function searches for files with a
.c extension. The function checks files and updates paths and
extensions based on the order in which you list the extensions in
the cell array. For example, if you specify {'.c' '.cpp'} and
a directory contains myfile.c and myfile.cpp, an instance of
myfile would be updated to myfile.c.

Description Using paths that already exist in a model’s build information, the
updateFilePathsAndExtensions function checks whether any file
references in the build information need to be updated with a path or
file extension. This function can be particularly useful for

• Maintaining build information for a toolchain that requires the use of
file extensions

• Updating multiple customized instances of build information for a
given model

3-58

updateFilePathsAndExtensions

Examples Create the directory path etcproj/etc in your working directory, add
files etc.c, test1.c, and test2.c to the directory etc. This example
assumes the working directory is w:\work\BuildInfo. From the
working directory, update build information myModelBuildInfo with
any missing paths or file extensions.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, fullfile(pwd,...
'etcproj', '/etc'), 'test');

addSourceFiles(myModelBuildInfo, {'etc' 'test1'...
'test2'}, '', 'test');

before=getSourceFiles(myModelBuildInfo, true, true);
before

before =

'\etc' '\test1' '\test2'

updateFilePathsAndExtensions(myModelBuildInfo);
after=getSourceFiles(myModelBuildInfo, true, true);
after{:}

ans =

w:\work\BuildInfo\etcproj\etc\etc.c

ans =

w:\work\BuildInfo\etcproj\etc\test1.c

ans =

w:\work\BuildInfo\etcproj\etc\test2.c

3-59

updateFilePathsAndExtensions

See Also addIncludeFiles, addIncludePaths, addSourceFiles,
addSourcePaths, updateFileSeparator
“Programming a Post Code Generation Command”

3-60

updateFileSeparator

Purpose Change file separator used in model’s build information

Syntax updateFileSeparator(buildinfo, separator)

Arguments buildinfo
Build information returned by RTW.Buildinfo.

separator
A character array that specifies the file separator \ (Windows) or /
(UNIX) to be applied to all file path specifications.

Description The updateFileSeparator function changes all instances of the current
file separator (/ or \) in a model’s build information to the specified
file separator.

The default value for the file separator matches the value returned by
the MATLAB command filesep. For makefile based builds, you can
override the default by defining a separator with the MAKEFILE_FILESEP
macro in the template makefile (see “Cross-Compiling Code Generated
on Windows”. If the GenerateMakefile parameter is set, Real-Time
Workshop overrides the default separator and updates the model’s build
information after evaluating the PostCodeGenCommand configuration
parameter.

Examples Update object myModelBuildInfo to apply the Windows file separator.

myModelBuildInfo = RTW.BuildInfo;
updateFileSeparator(myModelBuildInfo, '\');

See Also addIncludeFiles, addIncludePaths, addSourceFiles,
addSourcePaths, updateFilePathsAndExtensions
“Programming a Post Code Generation Command”, “Cross-Compiling
Code Generated on Windows”

3-61

4

Simulink Block Support

4 Simulink Block Support

The following table summarizes Real-Time Workshop and Real-Time
Workshop Embedded Coder support for Simulink blocks. For each block, the
third column indicates any support notes (SNs), which give information you
will need when using the block for code generation. All support notes appear
at the end of the table.

For more detail, enter the command showblockdatatypetable at the
MATLAB command prompt or consult the block reference pages.

Sublibrary Block Support Notes

Fixed-Point State-Space SN1

Transfer Fcn Direct Form II SN1, SN2

Transfer Fcn Direct Form II Time Varying SN1, SN2

Unit Delay Enabled SN1, SN2

Unit Delay Enabled External IC SN1, SN2

Unit Delay Enabled Resettable SN1, SN2

Unit Delay Enabled Resettable External IC SN1, SN2

Unit Delay External IC SN1, SN2

Unit Delay Resettable SN1, SN2

Unit Delay Resettable External IC SN1, SN2

Additional Math and Discrete:
Additional Discrete

Unit Delay With Preview Enabled SN1, SN2

Unit Delay With Preview Enabled
Resettable

SN1, SN2

Unit Delay With Preview Enabled
Resettable External RV

SN1, SN2

Unit Delay With Preview Resettable SN1, SN2

Additional Math and Discrete:
Additional Discrete

Unit Delay With Preview Resettable
External RV

SN1, SN2

4-2

Sublibrary Block Support Notes

Decrement Real World SN1

Decrement Stored Integer SN1

Decrement Time To Zero —

Decrement To Zero SN1

Increment Real World SN1

Additional Math and Discrete:
Increment/Decrement

Increment Stored Integer SN1

Derivative SN3, SN4

Integrator SN3, SN4

State-Space SN3, SN4

Transfer Fcn SN3, SN4

Transport Delay SN3, SN4

Variable Time Delay SN3, SN4

Variable Transport Delay SN3, SN4

Continuous

Zero-Pole SN3, SN4

Backlash SN2

Coulomb & Viscous Friction SN1

Dead Zone —

Dead Zone Dynamic SN1

Hit Crossing SN4

Quantizer —

Rate Limiter SN5

Rate Limiter Dynamic SN1, SN5

Relay —

Saturation —

Saturation Dynamic SN1

Discontinuities

Wrap To Zero SN1

4-3

4 Simulink Block Support

Sublibrary Block Support Notes

Difference SN1

Discrete Derivative SN2, SN6

Discrete Filter SN2

Discrete State-Space SN2

Discrete Transfer Fcn SN2

Discrete Zero-Pole SN2

Discrete-Time Integrator SN2, SN6

First-Order Hold SN4

Integer Delay SN2

Memory —

Transfer Fcn First Order SN1

Transfer Fcn Lead or Lag SN1

Transfer Fcn Real Zero SN1

Unit Delay SN2

Weighted Moving Average —

Discrete

Zero-Order Hold —

4-4

Sublibrary Block Support Notes

Bit Clear —

Bit Set —

Bitwise Operator —

Combinatorial Logic —

Compare to Constant —

Compare to Zero —

Detect Change SN2

Detect Decrease SN2

Detect Fall Negative SN2

Detect Fall Nonpositive SN2

Detect Increase SN2

Detect Rise Nonnegative SN2

Detect Rise Positive SN2

Extract Bits —

Interval Test —

Interval Test Dynamic —

Logical Operator —

Relational Operator —

Logic and Bit Operations

Shift Arithmetic —

4-5

4 Simulink Block Support

Sublibrary Block Support Notes

Cosine SN1

Direct Lookup Table (n-D) SN2

Interpolation (n-D) —

Lookup Table —

Lookup Table (2–D) —

Lookup Table (n-D) —

Lookup Table Dynamic —

PreLookup —

Lookup Tables

Sine SN1

4-6

Sublibrary Block Support Notes

Abs —

Algebraic Constraint Not supported

Assignment SN2

Bias —

Complex to Magnitude-Angle —

Complex to Real-Imag —

Concatenate SN2

Dot Product —

Gain —

Magnitude-Angle to Complex —

Math Function (10^u) —

Math Function (conj) —

Math Function (exp) —

Math Function (hermitian) —

Math Function (hypot) —

Math Function (log) —

Math Function (log10) —

Math Function (magnitude^2) —

Math Function (mod) —

Math Function (pow) —

Math Function (reciprocal) —

Math Function (rem) —

Math Function (square) —

Math Function (sqrt) —

Math Operations

Math Function (transpose) —

4-7

4 Simulink Block Support

Sublibrary Block Support Notes

MinMax —

MinMax Running Resettable —

Polynomial —

Product SN2

Real-Imag to Complex —

Reshape —

Rounding Function —

Sign —

Sine Wave Function —

Slider Gain —

Sum —

Trigometric Function SN7

Unary Minus —

Math Operations (continued)

Weighted Sample Time Math —

Assertion —

Check Discrete Gradient —

Check Dynamic Gap —

Check Dynamic Lower Bound —

Check Dynamic Range —

Check Dynamic Upper Bound —

Check Input Resolution —

Check Static Gap —

Check Static Lower Bound —

Check Static Range —

Model Verification

Check Static Upper Bound —

4-8

Sublibrary Block Support Notes

Atomic Subsystem —

Code Reuse Subsystem —

Configurable Subsystem —

Enabled Subsystem —

Enabled and Triggered Subsystem —

For Iterator Subsystem —

Function-Call Generator —

Function-Call Subsystem —

If —

If Action Subsystem —

Model —

Subsystem —

Switch Case —

Switch Case Action Subsystem —

Triggered Subsystem —

While Iterator Subsystem —

Ports & Subsystems

4-9

4 Simulink Block Support

Sublibrary Block Support Notes

Data Type Conversion —

Data Type Conversion Inherited —

Data Type Duplicate —

Data Type Propogation —

Data Type Scaling Strip —

IC —

Probe —

Rate Transition SN2, SN5

Signal Conversion —

Signal Specification —

Weighted Sample Time —

Signal Attributes

Width —

4-10

Sublibrary Block Support Notes

Bus Assignment —

Bus Creator —

Bus Selector —

Data Store Memory —

Data Store Read —

Data Store Write —

Demux —

Environment Controller —

From —

Goto —

Goto Tag Visibility —

Index Vector —

Manual Switch SN4

Merge SN13

Multiport Switch SN2

Mux —

Selector —

Signal Routing

Switch SN2

4-11

4 Simulink Block Support

Sublibrary Block Support Notes

Display SN8

Floating Scope SN8

Output (Out1) —

Scope SN8

Stop Simulation Not supported

Terminator —

To File SN4

To Workspace SN8

Sinks

XY Graph SN8

4-12

Sublibrary Block Support Notes

Band-Limited White Noise SN5

Chirp Signal SN4

Clock SN4

Constant —

Counter Free-Running SN4

Counter Limited SN1

Digital Clock SN4

From File SN8

From Workspace SN8

Ground —

Inport (In1) —

Pulse Generator SN5, SN9

Ramp SN4

Random Number —

Repeating Sequence SN10

Repeating Sequence Interpolated SN1, SN5

Repeating Sequence Stair SN1

Signal Builder SN4

Signal Generator SN4

Sine Wave SN6, SN9

Step SN4

Sources

Uniform Random Number —

4-13

4 Simulink Block Support

Sublibrary Block Support Notes

Embedded MATLAB Function —

Fcn —

MATLAB Fcn SN11

S-Function SN12

User-Defined

S-Function Builder —

4-14

Symbol Note

— Real-Time Workshop supports the block and requires no special notes.

SN1 Real-Time Workshop does not explicitly group primitive blocks that constitute a
nonatomic masked subsystem block in the generated code. This flexibility allows
for more optimal code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic unit by selecting
the Treat as atomic unit option.

SN2 Generated code relies on memcpy or memset (string.h) under certain conditions.

SN3 Consider using the Simulink Model Discretizer to map continuous blocks into
discrete equivalents that support code generation. To start the Model Discretizer,
click Tools > Control Design.

SN4 Not recommended for production code.

SN5 Cannot use inside a triggered subsystem hierarchy.

SN6 Depends on absolute time when used inside a triggered subsystem hierarchy.

SN7 The three functions — asinh, acosh, and atanh — are not supported by all
compilers. If you use a compiler that does not support these functions, Real-Time
Workshop issues a warning message for the block and the generated code fails to
link.

SN8 Ignored for code generation.

SN9 Does not refer to absolute time when configured for sample-based operation.
Depends on absolute time when in time-based operation.

SN10 Consider using the Repeating Sequence Stair or Repeating Sequence Interpolated
block instead.

SN11 Consider using the Embedded MATLAB block instead.

SN12 S-functions that call into MATLAB are not supported for code generation.

SN13 When more than one signal connected to a Merge block has a non-Auto storage
class, all non-Auto signals connected to that block must be identically labeled and
have the same storage class. When Merge blocks connect directly to one another,
these rules apply to all signals connected to any of the Merge blocks in the group.

4-15

4 Simulink Block Support

4-16

5

Blocks — By Category

Custom Code (p. 5-2) Insert custom code into generated
model files and subsystem functions

Interrupt Templates (p. 5-3) Create blocks that provide interrupt
support for real-time operating
system (RTOS)

S-Function Target (p. 5-4) Generate code for S-function

VxWorks (p. 5-5) Support VxWorks applications

5 Blocks — By Category

Custom Code

Model Header Specify custom header code

Model Source Specify custom source code

System Derivatives Specify custom system derivative
code

System Disable Specify custom system disable code

System Enable Specify custom system enable code

System Initialize Specify custom system initialization
code

System Outputs Specify custom system outputs code

System Start Specify custom system startup code

System Terminate Specify custom system termination
code

System Update Specify custom system update code

5-2

Interrupt Templates

Interrupt Templates

Async Interrupt Generate Versa Module Eurocard
(VME) interrupt service routines
(ISRs) that are to execute
downstream subsystems or Task
Sync blocks

Task Sync Spawn VxWorks task to run code of
downstream function-call subsystem
or Stateflow chart

5-3

5 Blocks — By Category

S-Function Target

RTW S-Function Represent model or subsystem as
generated S-function code

5-4

VxWorks

VxWorks

Async Interrupt Generate Versa Module Eurocard
(VME) interrupt service routines
(ISRs) that are to execute
downstream subsystems or Task
Sync blocks

Protected RT Handle transfer of data between
blocks operating at different rates
and ensure data integrity

Task Sync Spawn VxWorks task to run code of
downstream function-call subsystem
or Stateflow chart

Unprotected RT Handle transfer of data between
blocks operating at different rates
and ensure determinism

5-5

5 Blocks — By Category

5-6

6

Blocks — Alphabetical List

Async Interrupt

Purpose Generate Versa Module Eurocard (VME) interrupt service routines
(ISRs) that are to execute downstream subsystems or Task Sync blocks

Library Interrupt Templates, VxWorks

Description For each specified VxWorks VME interrupt level, the Async Interrupt
block generates an interrupt service routine (ISR) that calls one of the
following:

• A function call subsystem

• A Task Sync block

• A Stateflow chart configured for a function call input event

You can use the block for simulation and code generation.

Parameters VME interrupt number(s)
An array of VME interrupt numbers for the interrupts to be
installed. The valid range is 1..7.

The width of the Async Interrupt block output signal corresponds
to the number of VME interrupt numbers specified.

Note A model can contain more than one Async Interrupt block.
However, if you use more than one Async Interrupt block, do not
duplicate the VME interrupt numbers specified in each block.

VME interrupt vector offset(s)
An array of unique interrupt vector offset numbers corresponding
to the VME interrupt numbers entered in the VME interrupt
number(s) field. Real-Time Workshop passes the offsets to the
VxWorks call intConnect(INUM_TO_IVEC(offset),...).

6-2

Async Interrupt

Simulink task priority(s)
The Simulink priority of downstream blocks. Each output
of the Async Interrupt block drives a downstream block (for
example, a function-call subsystem). Specify an array of priorities
corresponding to the VME interrupt numbers you specify for
VME interrupt number(s).

The Simulink task priority values are required to generate
the proper rate transition code (see “Rate Transitions and
Asynchronous Blocks” in the Real-Time Workshop documentation).
Simulink task priority values are also required to ensure absolute
time integrity when the asynchronous task needs to obtain real
time from its base rate or its caller. The assigned priorities
typically are higher than the priorities assigned to periodic tasks.

Note Simulink does not simulate asynchronous task behavior.
The task priority of an asynchronous task is for code generation
purposes only and is not honored during simulation.

Preemption flag(s); preemptable-1; non-preemptable-0
The value 1 or 0. Set this option to 1 if an output signal of the
Async Interrupt block drives a Task Sync block.

Higher priority interrupts can preempt lower priority interrupts
in VxWorks. To lock out interrupts during the execution of an
ISR, set the preemption flag to 0. This causes generation of
intLock() and intUnlock() calls at the beginning and end of
the ISR code. Use interrupt locking carefully, as it increases
the system’s interrupt response time for all interrupts at the
intLockLevelSet() level and below. Specify an array of flags
corresponding to the VME interrupt numbers entered in the VME
interrupt number(s) field.

6-3

Async Interrupt

Note The number of elements in the arrays specifying VME
interrupt vector offset(s) and Simulink task priority must
match the number of elements in the VME interrupt number(s)
array.

Manage own timer
If checked, the ISR generated by the Async Interrupt block
manages its own timer by reading absolute time from the
hardware timer. Specify the size of the hardware timer with the
Timer size option.

Timer resolution (seconds)
The resolution of the ISRs timer. ISRs generated by the Async
Interrupt block maintain their own absolute time counters. By
default, these timers obtain their values from the VxWorks
kernel by using the tickGet call. The Timer resolution
field determines the resolution of these counters. The default
resolution is 1/60 second. The tickGet resolution for your board
support package (BSP) might be different. You should determine
the tickGet resolution for your BSP and enter it in the Timer
resolution field.

If you are targeting VxWorks, you can obtain better timer
resolution by replacing the tickGet call and accessing a hardware
timer by using your BSP instead. If you are targeting an RTOS
other than VxWorks, you should replace the tickGet call with an
equivalent call to the target RTOS, or generate code to read the
appropriate timer register on the target hardware. See “Using
Timers in Asynchronous Tasks” and “Async Interrupt Block
Implementation” in the Real-Time Workshop documentation for
more information.

Timer size
The number of bits to be used to store the clock tick for a hardware
timer. The ISR generated by the Async Interrupt block uses the
timer size when you select Manage own timer. The size can

6-4

Async Interrupt

be 32bits (the default), 16bits, 8bits, or auto. If you select
auto, Real-Time Workshop determines the timer size based on the
settings of Application lifespan (days) and Timer resolution.

By default, timer values are stored as 32-bit integers. However,
when Timer size is auto, you can indirectly control the word
size of the counters by setting the Application lifespan (days)
option. If you set Application lifespan (days) to a value that
is too large for Real-Time Workshop to handle as a 32-bit integer
of the specified resolution, Real-Time Workshop uses a second
32-bit integer to address overflows.

For more information, see “Application Lifespan”. See also “Using
Timers in Asynchronous Tasks”.

Enable simulation input
If checked, Simulink adds an input port to the Async Interrupt
block. This port is for use in simulation only. Connect one or more
simulated interrupt sources to the simulation input.

Note Before generating code, consider removing blocks that drive
the simulation input to ensure that those blocks do not contribute
to the generated code. Alternatively, you can use the Environment
Controller block, as explained in “Dual-Model Approach: Code
Generation”. However, if you use the Environment Controller
block, be aware that the sample times of driving blocks contribute
to the sample times supported in the generated code.

6-5

Async Interrupt

Inputs and
Outputs

Input
A simulated interrupt source.

Output
Control signal for a

• Function-call subsystem

• Task Sync block

• Stateflow chart configured for a function call input event

Assumptions
and
Limitations

• The block supports VME interrupts 1 through 7.

• The block requires a VxWorks Board Support Package (BSP) that
supports the following VxWorks system calls:

sysIntEnable
sysIntDisable
intConnect
intLock
intUnlock
tickGet

Performance
Considerations

Execution of large subsystems at interrupt level can have a significant
impact on interrupt response time for interrupts of equal and lower
priority in the system. As a general rule, it is best to keep ISRs as short
as possible. Connect only function-call subsystems that contain a small
number of blocks to an Async Interrupt block.

A better solution for large subsystems is to use the Task Sync block to
synchronize the execution of the function-call subsystem to a VxWorks
task. Place the Task Sync block between the Async Interrupt block
and the function-call subsystem. The Async Interrupt block then uses
the Task Sync block as the ISR. The ISR releases a synchronization
semaphore (performs a semGive) to the task, and returns immediately
from interrupt level. VxWorks then schedules and runs the task. See
the description of the Task Sync block for more information.

6-6

Async Interrupt

See Also Task Sync
“Asynchronous Support” in the Real-Time Workshop documentation

6-7

Model Header

Purpose Specify custom header code

Library Custom Code

Description The Model Header block adds user-specified custom code to the model.h
file that Real-Time Workshop generates for the model that contains
the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

Parameters Top of Model Header
Code to be added at the top of the model’s generated header file.

Bottom of Model Header
Code to be added at the top of the model’s generated header file.

Example See “Example: Using a Custom Code Block”.

See Also Model Source, System Derivatives, System Disable,
System Enable, System Initialize, System Outputs,
System Start, System Terminate, System Update
“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

6-8

Model Source

Purpose Specify custom source code

Library Custom Code

Description The Model Source block adds user-specified custom code to the model.c
or model.cpp file that Real-Time Workshop generates for the model that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

Parameters Top of Model Source
Code to be added at the top of the model’s generated source file.

Bottom of Model Source
Code to be added at the top of the model’s generated source file.

Example See “Example: Using a Custom Code Block”.

See Also Model Header, System Derivatives, System Disable,
System Enable, System Initialize, System Outputs,
System Start, System Terminate, System Update
“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

6-9

Protected RT

Purpose Handle transfer of data between blocks operating at different rates
and ensure data integrity

Library VxWorks

Description The Protected RT block is a Rate Transition block that is preconfigured
to ensure data integrity during data transfers. For more information,
see Rate Transition in the Simulink Reference.

6-10

RTW S-Function

Purpose Represent model or subsystem as generated S-function code

Library S-Function Target

Description An instance of the RTW S-Function block represents code Real-Time
Workshop generates from its S-function target for a model or subsystem.
For example, you extract a subsystem from a model and build an RTW
S-Function block from it, using the S-function target. This mechanism
can be useful for

• Converting models and subsystems to application components

• Reusing models and subsystems

• Optimizing simulation — often, an S-function simulates more
efficiently than the original model

• Protecting intellectual property — you need only provide the binary
MEX-file object to users

For details on how to create an RTW S-Function block from a subsystem,
see “Creating an S-Function Block from a Subsystem” in the Real-Time
Workshop documentation.

Requirements • The S-Function block must perform identically to the model or
subsystem from which it was generated.

• Before creating the block, you must explicitly specify all Inport block
signal attributes, such as signal widths or sample times. The sole
exception to this rule concerns sample times, as described in “Sample
Time Propagation in Generated S-Functions” in the Real-Time
Workshop documentation.

• You must set the solver parameters of the RTW S-function block
to be the same as those of the original model or subsystem. This
ensures that the generated S-function code will operate identically to
the original subsystem (see Choice of Solver Type in the Real-Time
Workshop documentation for an exception to this rule).

6-11

RTW S-Function

Parameters Generated S-function name (model_sf)
The name of the generated S-function. Real-Time Workshop
derives the name by appending _sf to the name of the model or
subsystem from which the block is generated.

Show module list
If checked, displays modules generated for the S-function.

See Also “Creating an S-Function Block from a Subsystem” in the Real-Time
Workshop documentation

6-12

System Derivatives

Purpose Specify custom system derivative code

Library Custom Code

Description The System Derivatives block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemDerivatives
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

Parameters System Derivatives Function Declaration Code
Code to be added to the declaration section of the generated
SystemDerivatives function.

System Derivatives Function Execution Code
Code to be added to the execution section of the generated
SystemDerivatives function.

System Derivatives Function Exit Code
Code to be added to the exit section of the generated
SystemDerivatives function.

Example See “Example: Using a Custom Code Block”.

See Also Model Header, Model Source, System Disable,
System Enable, System Initialize, System Outputs,
System Start, System Terminate, System Update
“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

6-13

System Disable

Purpose Specify custom system disable code

Library Custom Code

Description The System Disable block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemDisable
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

Parameters System Disable Function Declaration Code
Code to be added to the declaration section of the generated
SystemDisable function.

System Disable Function Execution Code
Code to be added to the execution section of the generated
SystemDisable function.

System Disable Function Exit Code
Code to be added to the exit section of the generated
SystemDisable function.

Example See “Example: Using a Custom Code Block”.

See Also Model Header, Model Source, System Derivatives,
System Enable, System Initialize, System Outputs,
System Start, System Terminate, System Update
“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

6-14

System Enable

Purpose Specify custom system enable code

Library Custom Code

Description The System Enable block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemEnable
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

Parameters System Enable Function Declaration Code
Code to be added to the declaration section of the generated
SystemEnable function.

System Enable Function Execution Code
Code to be added to the execution section of the generated
SystemEnable function.

System Enable Function Exit Code
Code to be added to the exit section of the generated SystemEnable
function.

Example See “Example: Using a Custom Code Block”.

See Also Model Header, Model Source, System Derivatives,
System Disable, System Initialize, System Outputs,
System Start, System Terminate, System Update
“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

6-15

System Initialize

Purpose Specify custom system initialization code

Library Custom Code

Description The System Initialize block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemInitialize
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

Parameters System Initialize Function Declaration Code
Code to be added to the declaration section of the generated
SystemInitialize function.

System Initialize Function Execution Code
Code to be added to the execution section of the generated
SystemInitialize function.

System Initialize Function Exit Code
Code to be added to the exit section of the generated
SystemInitialize function.

Example See “Example: Using a Custom Code Block”.

See Also Model Header, Model Source, System Derivatives,
System Disable, System Enable, System Outputs,
System Start, System Terminate, System Update
“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

6-16

System Outputs

Purpose Specify custom system outputs code

Library Custom Code

Description The System Outputs block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemOutputs
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

Parameters System Outputs Function Declaration Code
Code to be added to the declaration section of the generated
SystemOutputs function.

System Outputs Function Execution Code
Code to be added to the execution section of the generated
SystemOutputs function.

System Outputs Function Exit Code
Code to be added to the exit section of the generated
SystemOutputs function.

Example See “Example: Using a Custom Code Block”.

See Also Model Header, Model Source, System Derivatives,
System Disable, System Enable, System Initialize,
System Start, System Terminate, System Update
“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

6-17

System Start

Purpose Specify custom system startup code

Library Custom Code

Description The System Start block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemStart
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

Parameters System Start Function Declaration Code
Code to be added to the declaration section of the generated
SystemStart function.

System Start Function Execution Code
Code to be added to the execution section of the generated
SystemStart function.

System Start Function Exit Code
Code to be added to the exit section of the generated SystemStart
function.

Example See “Example: Using a Custom Code Block”.

See Also Model Header, Model Source, System Derivatives,
System Disable, System Enable, System Initialize,
System Outputs, System Terminate, System Update
“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

6-18

System Terminate

Purpose Specify custom system termination code

Library Custom Code

Description The System Terminate block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemTerminate
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

Parameters System Terminate Function Declaration Code
Code to be added to the declaration section of the generated
SystemTerminate function.

System Terminate Function Execution Code
Code to be added to the execution section of the generated
SystemTerminate function.

System Terminate Function Exit Code
Code to be added to the exit section of the generated
SystemTerminate function.

Example See “Example: Using a Custom Code Block”.

See Also Model Header, Model Source, System Derivatives,
System Disable, System Enable, System Initialize,
System Outputs, System Start, System Update
“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

6-19

System Update

Purpose Specify custom system update code

Library Custom Code

Description The System Update block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemUpdate
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

Parameters System Update Function Declaration Code
Code to be added to the declaration section of the generated
SystemUpdate function.

System Update Function Execution Code
Code to be added to the execution section of the generated
SystemUpdate function.

System Update Function Exit Code
Code to be added to the exit section of the generated SystemUpdate
function.

Example See “Example: Using a Custom Code Block”.

See Also Model Header, Model Source, System Derivatives,
System Disable, System Enable, System Initialize,
System Outputs, System Start, System Terminate
“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

6-20

Task Sync

Purpose Spawn VxWorks task to run code of downstream function-call subsystem
or Stateflow chart

Library Interrupt Templates, VxWorks

Description The Task Sync block spawns a VxWorks task that calls a function-call
subsystem or Stateflow chart. Typically, you place the Task Sync block
between an Async Interrupt block and a function-call subsystem block
or Stateflow chart. Alternatively, you might connect the Task Sync block
to the output port of a Stateflow diagram that has an event, Output to
Simulink, configured as a function call.

The Task Sync block performs the following functions:

• Uses the VxWorks system call taskSpawn to spawn an independent
task. When the task is activated, it calls the downstream function-call
subsystem code or Stateflow chart. The block calls taskDelete to
delete the task during model termination.

• Creates a semaphore to synchronize the connected subsystem with
execution of the block.

• Wraps the spawned task in an infinite for loop. In the loop, the
spawned task listens for the semaphore, using semTake. The first call
to semTake specifies NO_WAIT. This allows the task to determine
whether a second semGive has occurred prior to the completion of
the function-call subsystem or chart. This would indicate that the
interrupt rate is too fast or the task priority is too low.

• Generates synchronization code (for example, semGive()). This code
allows the spawned task to run. The task in turn calls the connected
function-call subsystem code. The synchronization code can run at
interrupt level. This is accomplished through the connection between
the Async Interrupt and Task Sync blocks, which triggers execution
of the Task Sync block within an ISR.

• Supplies absolute time if blocks in the downstream algorithmic code
require it. The time is supplied either by the timer maintained by

6-21

Task Sync

the Async Interrupt block, or by an independent timer maintained by
the task associated with the Task Sync block.

When you design your application, consider when timer and signal input
values should be taken for the downstream function-call subsystem that
is connected to the Task Sync block. By default, the time and input
data are read when VxWorks activates the task. For this case, the data
(input and time) are synchronized to the task itself. If you select the
Synchronize the data transfer of this task with the caller task
option and the Task Sync block is driven by an Async Interrupt block,
the time and input data are read when the interrupt occurs (that is,
within the ISR). For this case, data is synchronized with the caller of
the Task Sync block.

Parameters Task name (10 characters or less)
The first argument passed to the VxWorks taskSpawn system call.
VxWorks uses this name as the task function name. This name
also serves as a debugging aid; routines use the task name to
identify the task from which they are called.

Simulink task priority (0–255)
The VxWorks task priority to be assigned to the function-call
subsystem task when spawned. VxWorks priorities range from 0
to 255, with 0 representing the highest priority.

Note Simulink does not simulate asynchronous task behavior.
The task priority of an asynchronous task is for code generation
purposes only and is not honored during simulation.

Stack size (bytes)
Maximum size to which the task’s stack can grow. The stack size
is allocated when VxWorks spawns the task. Choose a stack size
based on the number of local variables in the task. You should
determine the size by examining the generated code for the task
(and all functions that are called from the generated code).

6-22

Task Sync

Synchronize the data transfer of this task with the caller task
If not checked (the default),

• The block maintains a timer that provides absolute time values
required by the computations of downstream blocks. The timer
is independent of the timer maintained by the Async Interrupt
block that calls the Task Sync block.

• A Timer resolution option appears.

• The Timer size option specifies the word size of the time
counter.

If checked,

• The block does not maintain an independent timer, and does
not display the Timer resolution field.

• Downstream blocks that require timers use the timer
maintained by the Async Interrupt block that calls the Task
Sync block (see “Using Timers in Asynchronous Tasks” in the
Real-Time Workshop documentation). The timer value is read
at the time the asynchronous interrupt is serviced, and data
transfers to blocks called by the Task Sync block and execute
within the task associated with the Async Interrupt block.
Therefore, data transfers are synchronized with the caller.

Timer resolution (seconds)
The resolution of the block’s timer in seconds. This option appears
only if Synchronize the data transfer of this task with the
caller task is not checked. By default, the block gets the timer
value by calling the VxWorks tickGet function. The default
resolution is 1/60 second. The tickGet resolution for your BSP
might be different. You should determine the tickGet resolution
for your BSP and enter it in the Timer resolution field.

Timer size
The number of bits to be used to store the clock tick for a hardware
timer. The size can be 32bits (the default), 16bits, 8bits, or
auto. If you select auto, Real-Time Workshop determines the

6-23

Task Sync

timer size based on the settings of Application lifespan (days)
and Timer resolution.

By default, timer values are stored as 32-bit integers. However,
when Timer size is auto, you can indirectly control the word
size of the counters by setting the Application lifespan (days)
option. If you set Application lifespan (days) to a value that
is too large for Real-Time Workshop to handle as a 32-bit integer
of the specified resolution, Real-Time Workshop uses a second
32-bit integer to address overflows.

For more information, see “Application Lifespan”. See also “Using
Timers in Asynchronous Tasks”.

Inputs and
Outputs

Input
A call from an Async Interrupt block.

Output
A call to a function-call subsystem.

See Also Async Interrupt
“Asynchronous Support” in the Real-Time Workshop documentation

6-24

Unprotected RT

Purpose Handle transfer of data between blocks operating at different rates
and ensure determinism

Library VxWorks

Description The Unprotected RT block is a Rate Transition block that is
preconfigured to ensure deterministic data transfers. For more
information, see Rate Transition in the Simulink Reference.

6-25

Index

IndexA
addCompileFlags function 3-2
addDefines function 3-5
addIncludeFiles function 3-8
addIncludePaths function 3-11
addLinkFlags function 3-14
addLinkObjects function 3-17
addSourceFiles function 3-22
addSourcePaths function 3-25
Async Interrupt block 6-2

B
blocks

Async Interrupt 6-2
Model Header

reference 6-8
Model Source

reference 6-9
Protected RT 6-10
RTW S-Function 6-11
System Derivatives 6-13
System Disable 6-14
System Enable 6-16

reference 6-15
System Outputs 6-17
System Start 6-18
System Terminate 6-19
System Update 6-20
Task Sync 6-21
Unprotected RT 6-25

blocks, Simulink
support for 4-2

C
compiler options

adding to build information 3-2
configuration parameters

code generation 1-2

D
derivatives

in custom code 6-13
disable code

in custom code 6-14
documentation

generated code 3-52

E
enable code

in custom code 6-15
extensions, file, see file extensions

F
file extensions

updating in build information 3-58
file separator

changing in build information 3-61
file types, see file extensions
findIncludeFiles function 3-28

G
getCompileFlags function 3-30
getDefines function 3-32
getIncludeFiles function 3-36
getIncludePaths function 3-39
getLinkFlags function 3-41
getSourceFiles function 3-44
getSourcePaths function 3-47

H
header files

finding for inclusion in build information
object 3-28

Index-1

Index

I
include files

adding to build information 3-8
finding for inclusion in build information

object 3-28
getting from build information 3-36

include paths
adding to build information 3-11
getting from build information 3-39

initialization code
in custom code 6-16

interrupt service routines
creating 6-2

L
link objects

adding to build information 3-17
link options

adding to build information 3-14
getting from build information 3-41

M
macros

defining in build information 3-5
getting from build information 3-32

makefile
generating and executing for system 3-30

model header
in custom code 6-8

Model Header block
reference 6-8

Model Source block
reference 6-9

models
parameters for configuring 1-2

O
outputs code

in custom code 6-17

P
packNGo function 3-50
parameter structure

getting 3-54
parameters

for configuring model code generation and
targets 1-2

paths
updating in build information 3-58

project files
packaging for relocation 3-50

Protected RT block 6-10

R
rate transitions

protected 6-10
unprotected 6-25

rsimgetrtp function 3-54
RTW S-Function block 6-11
rtwReport function 3-52

S
S-function target

generating 6-11
separator, file

changing in build information 3-61
source code

in custom code 6-9
source files

adding to build information 3-22
getting from build information 3-44

source paths
adding to build information 3-25

Index-2

Index

getting from build information 3-47
startup code

in custom code 6-18
System Derivatives block 6-13
System Disable block 6-14
System Enable block 6-15
System Initialize block 6-16
System Outputs block 6-17
System Start block 6-18
System Terminate block 6-19
System Update block 6-20

T
targets

parameters for configuring 1-2
task function

creating 6-21
Task Sync block 6-21
termination code

in custom code 6-19

U
Unprotected RT block 6-25
update code

in custom code 6-20
updateFilePathsAndExtensions

function 3-58
updateFileSeparator function 3-61

Index-3

	toc
	Configuration Parameter Reference
	Functions — By Category
	Build Information
	Project Documentation
	Rapid Simulation
	Target Language Compiler Library

	Functions — Alphabetical List
	Simulink Block Support
	Blocks — By Category
	Custom Code
	Interrupt Templates
	S-Function Target
	VxWorks

	Blocks — Alphabetical List
	Index

